

The Tektronix 2200 Series. Simply great.

Tektronix traditions of excellence in
designing and manufacturing oscilloscopes are recognised all over the world. But rather than rest on past
laurels, we have veered dramatically laurels, we have veered dramatically
from the well established design paths from the well established design pa
we ourselves. have laid down. With the 2213 priced at $£ 670^{*}$ and 2215 at $£ 850^{*}$, these 60 MHz dual new form of instrument.
Their most remarkable characteristic is the way in which major design
advances have provided full-range capabilities at prices significantly below what you would expect to pay. How has this been accomplished?
begin with, we have reduced the begin with, we have reduced the
number of mechanical parts by more number of mechanical parts by more facturing time, it lowers costs and improves reliability.

Board construction has been greatly
simplified and the number of boards simplified and the number of boards
reduced. Board connectors have also been reduced substantially and cabling cut by an amazing 90%.
The 2213 and 2215 have a high efficiency regulated power supply which does away with the need for a heavy power transformer. There are no line voltage adjustments. Just plug the instrument into a power socket suppl
ing anything from 90 to 250 volts, $48-62 \mathrm{HZ}$, switch on and you are ready to measure. Power saving
circuitry has eliminated the cooling far, resulting in further economies in
size and weight size and weight.
These scopes have it all. Dual trace Delayed sweep for fast, accurate timing measurements. Single time base in the 2213, dual time bases in
the 2215 . An advanced triggering
system, automatic focus and intensity Beam finder - and much more. Interested? Then why not telephone
your nearest Tektronix office or circle the enquiry number for further information.
Performance Specifications Two channels, DC-60 MHz to 20 mV/div, 50 MHz to $2 \mathrm{mV} / \mathrm{div}$. Light Weight
$6.1 \mathrm{~kg}(131 / 2 \mathrm{lbs}) .6 .8 \mathrm{~kg}(15,0 \mathrm{lbs})$ with $6.1 \mathrm{~kg}(131 / 2 \mathrm{lbs}) .6$
cover and pouch. cover and pouch Sweeps from $0,5 \mathrm{~s}$ to $0.05 \mu \mathrm{~s}$ (to 5
ns/div with $\times 10$ magnification) $\mathrm{ns} /$ div with $\times 10$ magnification).
Sensitivity Scale factors from $100 \mathrm{~V} /$ div ($10 \times$ probe) to $2 \mathrm{mV} / \mathrm{div}(1 \times$ probe $)$.
Accurate to $\pm 3 \%$. AC or DC coupling. Also available from Electroplan Also available from Electroplan.
Prices subject to change without notice.

Tektronix
СОММाTTED TO EXCELLENCE

THROUGH-LINE POWER METER

Front cover picture illustrates the
article on microprocessor stage rront cover picture
article on microprocessor stage
lightign systems, starting lighting systems, starting this
month.
NEXT MONTH
Digital filters - a new series giving theory, design techniques and implementation.
Program exchange by telephone-design o software systems for
loading source-code programs into memory.
Orchestral sqund, halls and timbre - or 'Why does it Vaughan examines the Kingsway Hall and puts forward a theory to account for its excellence.
 ter, Units 1 \& 2, Bankside Industrial Centre, Hopton Street, London SE1.
Availabie on microfilm; please contact editor.
yppost, current issue fl. 1.6 , back issues
(if availabole) $£ 1.50$, order and payments
 SM2 Editorial \& Advertising offices: Quad rant House, The Ouadrant, Sutton, Sur-
 Teilegrams/Toleox: 892084 BISPRS G.
Sutscription rates: 1 year $f 12$ UK Subscription rates: 1 year $£ 12$ UK and
$£ 15$ outside UK. £15 outside UK.
Student rates:
outside UKear $£ 8$ UK and $£ 10$ Distribution: Quadrant House, The Quad
rant, Sutton, Surrey SM2 5 SS. Tele-
 Subscriptions: Oakfield House, Perry-
mount Road. Harwards Heath, Sussex
RH16 3DH. Telephone 0444 S. 5188.
 YUA: $\$ 39$ surface mail, USA: subscriftions from, IPC B.P. Sub-
scriptions Office, 205 E.42nd Street, NY USA milling agents: Expediters of the
 Sunte 212, New York, NY 10022. 2nd-
class postage paid at New York. class postage paid at New York.
© IPC Business Press Ltd, 1982 ISSN
00436062

35 ENGINEERING-OR DOMINOES?

36 MICROPROCESSOR-CONTROLLED LIGHTING SYSTEM by J. D. H. White and N. M. Allinson
41 555-TYPE INTEGRATED CIRCUITS
41 by J. L. Linsley Hood
44 DIGITAL, MULTI-TRACK TAPE RECORDER
by A. J. Ewins
48 WORLD OF AMATEUR RADIO

49 EPROM PROGRAMMER by H. S. Lynes

53 NEWS OF THE MONTH

56 SIMPLE POWER AMPLIFIER by P. Wilson

59 LETTERS TO THE EDITOR
62 RECEIVERS
66 HEATING-Fby D. Ryder
68 CIRCUITIDEAS
70 DESIGNING WITH MICROP
75 ELECTRONIC OR
77 DISC DRIVES
by J. R. Watkinson
81 16-CHANNEL DATA ACQUISITIONby P. Hickey
85 SYMMETRICAL-OUTPUT DIVIDERS
by G. Girolami and P. Bamberger
87 ascli keyboard testerby Waleed Habibl Abdulla
89

WE HAVE MOVED

Hectronic Brokers

Second User Test Equipment. Wakes engineers smile without making accountants cry.

Electronic Brokers are Europe's leading Second User Equipment Company. We carry large stocks of the very latest test equipment which is refurbished in our own service laboratories and calibrated to meet the

manufacturer's sales specifications. When you buy used equipment from Electronic Brokers, it can be yours in just days. No waiting for manufacturers lengthy production schedules. All equipment is fully guaranteed.
 Electronic Brokers Limited 61/65 Kings Cross Road London WC1X 9LN
Telephone: 01-278 3461 .nmmpom
Telex: 298694 Elebro G

We supply FIN: for Industry

TUDIO FREOUE WENCY TRANSFORMERS OF EVERY TYPE YOU NAME IT! WE MAKE IT! OUR RANGE INCLUDES
\qquad

E. A. Sowter Ltd.

 WW - 015 FOR FURTHER DETAILS

WIRELESS WORLD APRIL 198

Amncron INDUSTRIAL

Associates
Professional industrial electronics
W- O20 FOR FURTHER DETALLS

hilomast SYSTEMS

Sowter Transformers

Hilomast Ltd

HILOMAST LIMITED THE STREET HEYBRIDGE - MALDON ESSEX CM9 7NB ENGLAND
Tel. MALDON $(0621) 56480$ TELEX NO. 995855

WW - 058 FOR FURTHER DETAILS
WIRELESS WORLD APRIL 1982

* NOW WITH A 2 YEAR WIARRANTY
* Fluke 8022B

Digit hand heldLCD. DMM. ACIDC volts.

${ }^{*}$ Fluke 8021 B .
Same spect as 8022 B with additional audio tone for
continuity. Vinyl case C90 $£ 8.00$....... $£ 95.00$
*Fluke 8020B
 DCIA Current. resistance, dioded test and
conductance. Continuity beeper. Vinyl case E90
E8.00125.00
*Fluke 8024 B

 FLUKE 8050A

ABB-230 Battery eliminator
Col Cary
80, Cary case for hand held

85RF R.F probe 500MHz...
Y8102 Thermocouple probe

103 Bead thermocouple Y8104 K type thermocou

carrlas
Simply Phone or
Telex your order for
immediate dispatch
Electronic Brokers Ltd 61/65 Kings Cross Roa Telephone: 01-278 3461 Telephone: 01-218 3461

High Technology
Communications Equipment

For all your Land Mobile and VHF Marine Communications Equipment contact us, we specialize in:

* Mobiles
* Hand Helds
* Base Stations
* Repeater Stations
* Tone encoders/Decoders
* Telephone Connect Systems
* Computer Interface Equipment
* R.F.Power Amplifiers
* Duplexers and Multi-couplers
* System Engineering
©миuwiove
Communications House
Purley Avenue, London NW2
Telephone: 01-452 8949/450 3452

WW - 064 FOR FURTHER DETAILS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14
days delivery. Other Ranges and special scales can be made to order.

Full Information from:
HARRIS ELECTRONICS (London) 138 GRAYS INN ROAD. W.C. 1 Phone: $01 / 837 / 7937$
 COUNERTMU:
a professional, portable low cost unit

Telomat AB64 Counter imer

- 3 frequency ranges $D C$ to 180 MHz with $1 \mathrm{~Hz}-1 \mathrm{KHz}$ providing 0.01 Hz resolution within $1 \mathrm{~Hz}-1 \mathrm{KHz}$ provi
10 seconds.
- Period/Time ranges to $1 \mu \mathrm{Sec}, 1 \mathrm{mSec}$ and 1 Sec
- Manual and logic gating on the time and event
- $\begin{aligned} & 13 m m 8 \text { digit display with leading zero } \\ & \text { suppression. }\end{aligned}$
- Internal charger and NiCad batteries. Price $£ 195.00$ plus VAT (carriage inc!.) from

Telemet

mex Kent DAB 10L,
Tel. (03224) 39677.

We supply RMMIC for Industry

Sam to 6pm April17th Sam to 5pm

The exhibition for every radio amateur

Public Transport. Alexandra Palace is easily reached by road and has free car and coach parking. Bus services 29 ,
$41,102,123,134,212,221$, and 244 are within easy walking distance, and service W3 connects with the Underground
at Wood Green (Piccadilly Line) and Finsbury Park at Wood Green (Piccadilly Line) and Finsbury Park
(Piccadilly and Victoria Lines). (Piccadilly and Victoria Lines).
By. Car. A.P. is near Muswell Hill or Wood Green, off the
North Circular Road. Talk-in: GBARP. FM S22 or SU8 (initial calls).
SSB 144.28 MHz (listening watch).
Discoversth world of

- AMATEUR RADIO -

RADIOCODE CLDCKS

are powerful and comprehensive instruments which receive, decode

[^0]If you have a time or synchronisation problem, write or phone for further details of our portable and new microcomputer-controlled Radiocode

Circuit Services, 6 Elmbridge Drive
Ruislip, Middiesex. Ruislip 76962
WW - 008 FOR FURTHER DETALLS
WIRELESS WORLD APRIL 1982

Eactronic Broker DECSALE a selection from ou huge stocks

Just 50 p will bring you the latest Wilmslow Audio 80 page catalogue packed with pictures and specifications of Hifi and PA Speaker Drive Units, Speaker Kits, Cabinet Kits

1000 items for the constructor.
CROSSOVER NETWORKS AND COMPONENTS. GRILLES, GRILL FABRICS AND FOAM. PA, GROUP DISCO CABINETS - PLUS MICROPHONES -
AMPLIFIERS - MIXERS - COMBOS - EFFECTS SPEAKER STANDS AND BRACKETS - IN-CAR SPEAKERS AND BOOSTERS ETC. ETC.
\star Lowest prices - Largest stocks

- Expert staff - Sound advice *
* Choose your DIY Hifi Speakers in the comfort * (Customer of our listening lounge.
\star Ample parking \star

35/39 Church Street, Wilmlsow, Cheshire SK9 1AS

WIRELESS WORLD APRIL 1982

11/70 512KB MOS, RWMO5 Disk, LA120

 00.00

VDU\&FRNMER

hazeltine hrooolvou

 ceizeand

 ondo WC1X IN La., $01 / 65$ kings Cross Road, $1=-1$

IT COULD WITH
THE CROFTON ZX81 ADAPTAKIT.
ONLY $£ 35.00$ plus VAT - total $£ 40.25$ plus $£ 2.45$ P\&P. AND IT ALSO HAS A VIDEO OUTPUT TO DRIVE A STANDARD MONITOR.

SEND FOR DETAILS.
CROFTON ELECTRONICS LIMITED

FM/AM 1000s with Spectrum Analyser - we call it the SUPER-S
 Tost two -way radio system tests.

A PRACTICAL TOP
MM-100 MULTI-METER

the fololowing functions.
Sinad: Measurements for 1 kHz

Distortion: To 30\%
DC Volts: Up to 300
DC Volts: Up to 300 volts and up to
800 volts when the
x 10 probe is used
AC Volts: 600 VRMS maximum for frequencies between 25 Hz and 25 kHz
Ohms: Using the modified probe, part number PB-114, Ohms Using the modified probe, part number
Ohms can be measured on scales $\times 1$ to $\times 10 \mathrm{~K}$
\% AM Measured on the RF signal applied to the \% AM M Masured on the RF signal applied to the
FM/AM-100 unit
FM/AM-1000 unit
OPTIONAL ACCESSORIES
A choice of R.F. power attenuators and protective
carrying cases.
For further information contact Mike Taylor

IFR precision simulators
 -

50+ CASES FOR SPECIALISTS referred by JENSEN

Designed for the professional electronic
technician requir
toling a complete est of
50 professional tools. VoM Test meter

 complete renge of over 30 emptry cases
in the e Jensen coatoguve evailabe on
and

Special Products Distributors Limited 81 Piccadilly, London W1V OHL Tel. 01-629 9556 Cables: Speciprod, London, W. 1 wW - 059 FOR FURTHER DETALLS

The new CES micropad

For further information contact the sole agents $\underset{\substack{\text { Quartz } \\ \text { Devices }}}{\text { Quen }}$

$$
\begin{aligned}
& \square \longrightarrow
\end{aligned}
$$

WW - 014 FOR FURTHER DETALL

The WERSI Concept

Build your own electronic organ with the WERSI system

WERSI and AURA - The Winning Combination
Access/Barclaycard 24 hr telephone service.

The Arc single-board computer with

BASIC

- Z8671 MICRO PROCESSOR WITH ON-CHIP BASIC INTERPRETER - REAL TIME CLOCK/CALENDAR WITH ON-BOARD BATTERY BACKUP - RS232 INTERFACE WITH 8 BAUD RATES 110-19200
- 4K BYTES OF RAM-PLUS DEMONSTRATION PROGRAMS IN $2 K$ EPROM
-CAN BE EXPANDED ON BOARD TO 2OK BYTES OF RAM/EPROM
- CHOICE OF TWO BUS SYSTTEMS - 64 WAY EURO CARD-50 WAY RIBBON CABLE - 19 ÚNCOMMITTED I/O LINES
 alendar, large memory capacity, serial and parallel IVO. timers,
interrupt and exponsion capobiitities make it the most cost-effective solution for control problems.
 then transerred to EPROM. The computer includes 4 K bytes. of

also available POWER SUPPLY MODUL
Outputs
$5 V$
30V

 Cations.

ARC1 computer ARC1 computer £ 135.00 $\begin{array}{ll}\text { Power supply } & £ 32.00\end{array}$ £32.00

Head Office: 37 Grahame Close, Blewbury, Oxon. OX11 90E Tel Blowbury (0235) 850544 WW - 074 FOR FURTHER DETALLS

You tell us well deliver!
We have the UK manufacturing facilitites, experience and skills
to iove you the panel meter you want With all aspects of panel to give you the panel meter you want. With all aspects of panel
meter construction under our contron it means oou can specity
and get the sensitivity, movement ballistics and scale you want. It all addds up to greatere flexexibility and a widder croice.
You want them quickly? - of course! Low quantities or large quantities spesent no problems Next time why not give us a
call - ask for Colin Williams tell him what you want - you could call - ask for Colin Williams, tell him what you want - you could
be surprised at what he may have to tell you! 4)

Bach-Simpson
Bach-Simpson (U.K.) Limited,
Trenant Estate, Wadebridge. Cornwall, PL 27 6HD.
Telephone: $(0208811$ 2031 Telex: 45451
ww - 025 FOR FURTHER DETALLS

SOUND INVESTMENT

QUALITY REEL TO REEL \& CASSETTE TAPE HEADS

MONOLITH
electronic products

TV TUBE REBUILDING

Full training courses are individually tailored to customers
requirements.
For full details of our service contact Neil Jupp.
FAIRCREST ENGINEERING LTD.
4 Union Road, Croydon, CRO
$01-6841422 / 101-684$
0246
WW - 033 FOR FURTHER DETAILS

HANDSOW:I

First there was the 130. A handheld D.M.M. which still sets the standards our competitors strive to maich. Next came the 131. The introduction of the 135 saw $41 / 2$ digits on a handheld D.M.M. for the very first time.
And that same commitment to innovation has resulted in the iatest additions to the range. The Keithley
128 D.M.M. with audio-tone and 870 Digital Thermometer with centigrade and fahrenheit readout. The result is an unrivalled selection of handheld measuring devices. Each specification carefully matched to a given need. With performance that looks pretty good on paper. And even better in the field!

$$
\text { Model } 135
$$

Model 870 ○ 0.025% accuracy O Centigrade and fahrenheit readout O Measures up to $1370{ }^{\circ} \mathrm{C}$
0.1° resolution up to $200^{\circ} \mathrm{C}$ (
Model 128 Q Audio-tone with adjustable threshold $\bigcirc 25$ ranges: 5 functions $\bigcirc 10$ amp span Model $135 \bigcirc 0.05 \%$ accuracy © Full overload protection ACU bandwidth to 20 KHz Model 131 - 0.25% accuracy 25 ranges: 5 functions 010 amp span Model $130 \bigcirc 25$ ranges: 5 functions 010 amp span $\bigcirc 0.5 \%$ accuracy
All models are guaranteed accurate for one year. And built to the high standards of quality expected of the Keithley name.
For more information simply fill in the coupon. And learn about a range which will serve you . . . handsomely!

KEITHLEY

Keithiey Instruments Litd
1 Boulton Road Reading Berkshire RG2 ONL
Telephone (073
Telex 847047
Also available from
I.T.T. Instrument Services, Tel. Harlow 29522 WW - 031 FOR FURTHER DETALLS

TEST INSTRUMENTS

8110 A 20Hz-100MHz $8610 \mathrm{~A} 20 \mathrm{~Hz}-600 \mathrm{MHz}$

 8610A

DAROM SUPPLIES

Cheshire WA4 2AY
Tel. 092564764
16
WW O44 - FOR FURTHER DETAILS

YC1000L

JOIN THE MICRO REVOLUTION WITH THE YC1000L DATA LOGGER This new laboratory grade instrument features microprocessor control for increased versatility. Its (0.02ppm accuracy), a precision AC/DC voltmeter, a thermal sensor and a programmable tiger
digital display or recorded on the integral logger.
Price $£ 725+$ VAT

PMR HIGHBAND "COMPACT SMC1015L1"

The SMC1015L1 "compact" VHF highband transceiver is currently available ex-stock at realis
tic prices. Why pay more? We are satisfied tic prices. Why pay more? We are satistied that our
standard of construction matches that of the leading names. Write for details:

Data recording and analysis:

If you need to record and analyse data俍 advantages of using the Microdata M1600L data logger.

Magnetic tape cartridge Because it records on a standard $1 / 4$ inch magnetic output can be replayed at high speed into computer, calculator or other data processing equipment. Alternatively, the internal replay facility of the data logger
can be used. No other data logger has this
capability.
Individual conditioning cards
Individual, plug-in signal conditioning
cards are used-one for eachor the 20 input
channels (expandable up to 100). As a
result, each customer receives a bespok
instrument ready to handle mixed
analogue and digital inputs from most cost to condition virtually every type of electrical signal, to reconfigure the instrument for different projects. No oth data logger offers these facilities.

$$
\begin{aligned}
& \text { Exceptional versatility The M1600] } \\
& \text { vailable either as a mains powered. }
\end{aligned}
$$ is available either as a mains powered, free-standing, laboratory instrument or in the portable weatherproof form operating from its internal batteries. For more systems, it can be supplied in chassis form for mounting in a 19 inch rack. No other data logger displays this versatility.

The M1600L is now widely adopted agricultural and environmental research If you would like further details, please
meet the time shrinker!

ers in the field
ders in the field

ww - 055 FOR FURTHER DETAIS

-Power output is suoted in WRMS Sand d siven for two modules off the same power supply. Higher powers can be obtained if using our dual power supplies or

CK 1010 contains pre-amp circuitry, all metalwork connectors, wire, etc., to make a
CK 1040 contains power amp modules, all metalwork, dual power supply, connec CS 1100 as CK 1040 but at 100 w/channel CS 1100 as CK 1040 but at $100 \mathrm{w} / \mathrm{channe}$.
Unlike other module manufacturers CRIMSON have a major share of the esoteric, specialist Hi-Fi market. Unlike many manufacturers we acknowledge the massive audible differences that small component/circuit changes can produce. Howe ver sur amplifiers are technically outstanding and ha
stunning level of crisp and detailed reproduction.

IRELESS WORLD APRIL 1982

write, telephone, or return thi advertisement clipped to your rheading.
MICRODATA LIMITED, MONITOR HOUSE ENGLAND. Telephone: RADEETT (09276) 3333.
Telex: 9249 . ENGLAND. Telephon
Telex: 924937 .
\qquad
 -1 $+2+2$ $+2+2$

Sinclair 2X81 Personal Computer－ the heart of a system that grows with you．

1980 saw a genuine breakthrough－ 980 saw a genuine breakthrough－ plete personal computer for under $£ 100$ ．Not surprisingly，over 50，000 were sold．
In March 1981，the Sinclair lead increased dramatically．For just more advanced facilities at an even ower price．Initially，even we were urprised by the demand－ove 0,000 in the first 3 months！ Today，the Sinclair ZX81 is the add 16 －times more memory with the ZXRAM pack．The ZX Printer offers an unbeatable combination of performance and price．And the ZX Software library is growing every day Lower price：higher capability teach yourself computing sumple to ZX81 packs even greater working capability than the ZX80

It uses the same micro－processor， but incorporates a new，more power ful 8K BASIC ROM－the＇trained intelligence＇of the computer．This and trig，allows you to plot and builds up animated displays．

And the ZX81 incorporates othe operation refinements－the facility to load and save named programs drive the new ZX Printer，and

Kit：
 £49．95

higher specific

 Qure simply，by design．The ZX80 educed the chips in a working ZX81 reduces the 21 to 4 ！The secret lies in a totally new master chip．Designed by Sinclair and custom－built in Britain，this unique chip replaces 18 chips from the ZX80
New，improved specification －Z80A micro－processor－new faster version of he famous $Z 80$ chip，widely re －Unique
entry：the ZX81 eliminates a grea deal of tiresome typing．Key words （RUN，LIST，PRINT，etc．）have their own single－key entry．
codes identify progran ogramming errors
－Full range of mathematical and scientific functions accurate to eigh decimal places． －Graph－drawing and animated－ －Multi－dimension
numerical arrays．
－Up to 26 FOR／NEXT loops． －Randomise function－useful for games as well as serious application named programs
－1K－byte RAM expandable to 16 K bytes with Sinclair RAM pack． －Able to drive the new Sinclair printer．
－Advanced 4－chip design：micro－ processor，ROM，RAM，plus maste replacing 18 ZX80 chips．

Built：
 £69．95

Kit or built－it＇s up to you！ You＇ll be surprised how easy the ZX81 kit is to build：just four chips to assemble（plus，of course the other discrete components）－a few hours＇ And you may already have a suitable mains adaptor -600 mA at 9 VDC nominal unregulated（supplied with built version）．

Kit and built versions come com－ plete with all leads to connect to and cassette recorder

16K－byte RAM pack for massive add－on memory．
Designed as a complete module to fit your Sinclair 7×80 or 7×81 the fit your Sinclair 2×80 or 2×81 ， existing expansion port at the rear of the computer to multiply your data／program storage by 16 ．
Use it for long and complex
programs or as a personal databas
Yet it costs as little as half the price of competitive additional memory． With the RAM pack，you can also run some of the more sophisti－ cated ZX Software－the Business \＆ Household management system for example．
$\square \square-\square$ 7×8
6 Kings Parade，Cambridge，Cambs．，CB2 1SN

Available now－ the ZX Printer
for only £49．95
Designed exclusively for use with the ZX81（and ZX80 with 8K BASIC ROM），the printer offers full alpha－ graphics． graphics prints out exactly what COPY，which whole TV screen what is on the for further intructions

Atlastyouctions．
At last you can have a hard copy of your program listings－particularly How to order your ZX81 BY PHONE－Access，Barclaycard or Trustcard holders can call 01－200 0200 for personal attention 24 hours a day，every day． needed coupon below．You can pay
useful when writing or editing programs．
And of course you can print out your results for permanent records or sending to a friend．
Printing speed is 50 characters per second，with 32 characters per
line and 9 lines per vertical inch The ZXPrinter connects to the rear of your computer－using a stackable connector so you can plug in a RAM pack as well．A roll of paper（ 65 ft ong $x 4$ in wide）is supplied，along with full instructions．
by cheque，postal order，Access， Barclaycard or Trustcard． EITHER WAY－please allow up to 28 days for delivery．And there＇s a 14 －day money－back option．We wan and we have no doubt that you will be Гーーーーーーーーールーーーーーーーーーーーーーーワ To：Sinclair Research Ltd，FREEPOST，Camberiey，Surrey，GU15
Oty Item

aty	Item	Code	Itemprice	Total
	Sinclair ZX81 Personal Computer kit（s）．Price includes ZX81 BASIC manual，excludes mains adaptor．	12	49.95	
	Ready－assembled Sinclair ZX81 Personal Computer（s）． Price includes $\mathrm{ZX81}$ BASIC manual and mains adaptor．	11	69.95	
	Mains Adaptor（s）（ 600 mA at 9 VDC nominal unregulated）．	10	8.95	
	16K－BYTE RAM pack．	18	49.95	
	Sinclair CXP Printer．	27	49.95	
	BK BASIC ROM to fit 2×80	17	19.9	
	Post and Packing．			2.95
\square Please tick if you require a VAT receipt TOTAL				
＊enclose a cheque／postal order payable to Sinclair Research Ltd，for $£$ ＊Please charge to my Access／Barclaycard／Trustcard account no．				
＊Please delete／complete as applicable． \qquad 11111 \qquad				
Address：$L \perp \perp \perp \perp 1: \perp \perp \perp \perp \perp \perp \mid$				

FREEPOST－no stamp needed．Offer applies to UK only．

SAFGANDT-400 Serw-0 SAFGAN DT-400 Se
BRIISH MAKE DUAL TRACE SCOPES

The Thinking Cap

Now you can measure, sort and check capacitance in less time, with more accuracy.

The new 3001 Digital Capacitance Meter is yet another superb instrument from G. S. C. Designed specifically for protessional laboratories, test and production benches, it offers All in a well designea, rugged unit for only $£ 165^{*}$. As usual, we continued where everyone else left off. Behind gives an accuracy of 0 1\% of the reading (0 5% in the two highest ranges). Other features include nine overlapping ranges up to 0.1999 F , with down to 1 pF resolution, automatic over and under-range indications, and the 3001 isn't fooled by dielectric absorpion. Once the range is selected, measurement is speeay

- less than half a second!

Our back panel has more facilities too. An easy interface for remote display, sorting and control accessories, and, to
eliminate battery problems an AC mains input. A great deal of thought has been put into ine accessories
which include a production test fixture, a Limits Unit, a variety o test cables and an extremely comprehensive manual covering tesi cables, and an measurement on capacitors but also apolications to testing oiher types of components and even cables
The 3001 Digital Capacitance Meter. The only one worth thinking about.

Tomorrow's tools for today's problems

GLOBAL SPECIALTIES CORPORATION G.S.C. (UKK) Limitad, Dept. TFF, Unit 1, Shire Hill Iddustrial Estate, Soffron Walden, Essex CB11 3AQ.

G.S.C.(UK)Limited,

 WW - 061 FOR FURTHER DETAILS

When your
 Two Way Radio supplier is acting like a monkey, the complete Zycomm range will put him in the background

ZYCOMM ELECTRONICS LIMITED 47/51 Pentrich Road, Ripley, Derby DE5 3DS Tel: Ripley (0773) 44281 Telex: 377477

Agencies available throughout the UK and the World

HAMEG OSCILLOSCOPES

£29.95

PROFESSIONAL
MULTIMETERS

 THURLBY DIGITAL
MULTIMETER MODEL 1503 MULTIMETER MODEL 1503

 adit. DIRECT READ D/40KV: 20 K Volt E 18.40

TAKE ACOACH TOTHESHOW:

A word-first in exhibition visitor attraction. .. unique to Britain.
D) Full details of all the events, seminars and receptions taking place during he all Need we mention that, with this kit, you those exhibitors you visit by contacting nd and can also prepare spec/cost/availability queries to put to their competitors.

Britain's No. 1 electronics event created to take on the best in Europe The All-Electronics/ECF Show is your big, big one!
to visit, no less and sixty stands for you
And we couldn't make it easier for you to see them.
Just use the top coupon if you'd like to travel via our coach parties.
Or, if you'd prefer to make your own
way there, use the bottom coupon.
send you tickets, catalogue, details -oh everything! (But we must get your form by April 10th.)

Remember this: you can't afford to miss The All-Electronics/ECIF Show
It's true.
So big is 'The Show's' scale that uaurl everyone will be there.
Your next employer, to be oppor
And the manufacturer of components that will
design.
Or the purveyor of products at sig been accepting.
Plus your colleagues from way back when Rus the chance recognition of an product parade, the conflux of com petitors, the state of the mart... well, you'd not pass Go, not collect £200!
So take two minutes now to prepare

tron
East
D

They depart from the towns listed at 9 a.m.ish. And they leave the Barbican between 5 and 6 p.m.
 Please tick the appropriate boxes, P.O made out to The All-Electronics/ECIF Show, and we'll send you full information (including the departure points, their nearby car parking facilities, luncheon aternatives, and so on).
 II, by any chance, fewer than 30people wish to journey from the town of your choice on the day of your choice, you'll get your money back a.s.a.p. catalogue, a free season ticket. And we'll enclose a receipt.
 "I require (insert quantity) \square packages and enclose cheque/P.O. for: £
 Name (please use clear capital leteres)
 Address
 Use this form if you're going to use our coaches PRICES QUOTRD A RETURN FARES
 AYIESBURY BASILDON BASNGGSTOKE BEDFORD BIRMINGHA BRMINGHAM BRENTTWOOD BRIGHTON BURY ST. ED. CAMBRDGGE COLCHESTER COLCHESTER CRAWLEY DARTFORD DOVER FARNBOR'GH GUILDFORD HARLOW ASTINGS IEMEL HEMP. PSWICH ETTERNG KING'S LYNN LEATHERHEAD LEICESTER LINCOLN LOUGHBOR'GH UTON MADENHEAD

2 Making your own

- way? Use this

Please attach a 20p stamp by its corner to cover postage and packing costs for your ree season ticket to 'The Show.' Plus 120-pp catalogue with full details of the ventities (seminars, receptions, etc.)

? If you're just going S to tum up...

Well, admission is £l without a ticket

 We're open between 10 a.m. and 6 p.m. on Tuesday and. Wednesday. But between a.m. and 5 p.m. on Thursday. (This ticket, so do ask for one now!)

Name
Address

 Hewater
 Organised from: AES Saffron Walden, Essex CB10 IEP. Telephone: (0799) 226612. Telex: 81653

MICROCOMPUTER COMPONENTS AND SYSTEMS

The Profesional Choice

ELECTROVILUE

CLEF electronic MUSIC

WW - 005 FOR FURTHER DETAIL

P.\&R. COMPUTER SHOP

IBM GOLFBALL PRINTER 3982 , f 70 EPSON MX-80 80.GPs 3982 IBM I/O PRINTERS DOT MATRIX PRINTER WITH SPECIAL INTERFACES VDUs, ASCII KEYBOARDS, ASR, KSR, TELETYPES, PAPERTAPE READERS, PAPERTAPE PUNCHES,
SCOPES, TYPEWRITERS, FANS $4^{\prime \prime} 5^{\prime \prime} 6^{\prime \prime}$. POWER
 MISCELLANEOUS COMPUTER EQUIPMENT
OPEN: MONDAY TO FRIDAY 9 a.m.-5 p.m. OPEN: MONDAY TO FRIDAY 9 a.m.-5 p.m

COME AND LOOK AROUND
SALCOTT MILL, GOLDHANGER ROAD
HEYBRIDGE, ESSEX
PHONE MALDON (0621) 5744
ww - 029 FOR FURTHER DETALLS

Scopex Instruments now offer you an unrivalled choice of oscilloscopes at under £300. The straightforward and successful 14D10 with a sensitivity of $2 \mathrm{mV} / \mathrm{cm}$ at 10 MHz on both channels at $£ 240$ + VAT. The new 14 D 1515 MHz dual trace $5 \mathrm{mV} / \mathrm{cm}$ with active TV sync separator at $£ 250$ + VAT and the sophisticated 14D10V 10 MHz dual trace $2 \mathrm{mV} / \mathrm{cm}$ active N syn separator and line selector at $£ 290+$ VAT. All these above prices include two probe mains $\times 8 \mathrm{~cm}$ display, ge U.K. Ma inva facity $0 \mathrm{~cm} \times 8 \mathrm{~cm}$ display, add and invert facility, rotate are all standard features of this 14D range You the customer decide the extras you need to fulfil your specific reauirement. An Independent British Company Credit Cards and Orders
\qquad contact our Sales department at: retate are all standard featus of this 14D range. Please send me full details of the 14 D range.

Postage
will be
will be
Licensee

Do not affix Postage Stamps if posted in
Gt Rritain Col or the Isle of Man

BUSINESS REPLY SERVICE
Licence No 12045
WIRELESS WORLD
429 Brighton Road
429 Brighton Road
South Croydon
Suirey CR2 9PS

Enquiry Readers

WW.	WW.	WW.
ww	ww	nw.
ww	ww.	ww.
ww.	ww.	ww
ww.	ww.	ww
ww	ww.	ww
ww	ww	ww
ww	ww.	ww
ww	ww.	ww
ww	ww	ww
ww.	ww.	ww
ww.	ww	ww
ww..	ww.	ww
ww.	ww.	ww
WW . .	ww.	ww
WW . . .	WW..	ww.

WIRELESS WORLD Wireless World, April 1982 WW 264
Please arrange for me to receive further details of the products listed, the appropriate
space provided.
Name...
Name of Company
Address.

Telephone Number

\section*{| PUBLISHERS |
| :--- |
| USE ONLY |}

Nature of Company/Business
wish to subscribe to Wireless wid
VALID FOR SIX \square

Wireless World: Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager,
 IPC Business Press,

Oakfield House, Perrymount Road,
Haywards Heath, Sussex RH16 3DH, England

Wireless World Subscription Order Form Wireless World, April 1982 WW 264

UK subscription rates $\mid \quad$ USA \& Canada subscription rates

1 year: $£ 12.00$ 1 year: $\$ 39.00$
Overseas 1 year: $£ 15.00$
Please enter my subscription to Wireless World for 1 year
I enclose remittance value.

Name.

Address \qquad
\qquad
\qquad

PUT A SMIILE BACK ON YOUR OLD AVOMETER!

Send it now for estimate, repair or recalibration

Quick turn round on estimates/repairs

Large stocks of new AVOMETERS

Avo Sales and ServiceFarnell International

Farnell International Instruments Ltd
Sandbeck Way. Wetherby
West Yorkshire LS22 4DH
Tel 093761961 Telex 55478 Farint G

AFTER!

LOW COST VOLTMETERS

BEFORE

LEVELL
PORTABLE INSTRUMENTS

LEVELL A.C. MICROVOLTMETERS AND BROADBAND VOLTMETERS are part of These voltmeters give accurate readings over a wide range of frequencies They are housed in robust steel cases and are powered by long life batteries.

A.C. MICROVOLTMETERS

voltage \& dB RANGES	$15 \mu \mathrm{~V}, 50 \mu \mathrm{~V}, 150 \mu \mathrm{~V}$. . 500 V fsd Acc. $\pm 1 \% \pm 1 \%$ fsd $\pm 1 \mu \mathrm{~V}$ at 1 kHz , $-100,-90 \ldots+50 \mathrm{~dB}$. Scale $-20 \mathrm{~dB} /+6 \mathrm{~dB}$ ref. $1 \mathrm{~mW} / 600 \Omega$
RESPONSE	$\pm 3 \mathrm{~dB}$ from 1 Hz to 3 MHz , $\pm 0.3 \mathrm{~dB}$ from 4 Hz to 1 MHz above 500 V . TM3B filter switch; LF cut 10 Hz .
INPUTIMPEDANCE	Above 50 mV : $10 \mathrm{M} \Omega<20 \mathrm{pF}$. On $50 \mu \mathrm{~V}$ to 50 mV : $>5 \mathrm{M} \Omega<50 \mathrm{pF}$

BROADBAND VOLTMETERS

$1 \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mv} \ldots 3 \mathrm{fsd}$. $-50,-40 \ldots+20 \mathrm{~dB}$.
H.F. RESPONSE
$\pm 3 \mathrm{~dB}$ from 300 kHz to 400 MHz .
$\pm 0.7 \mathrm{~dB}$ from 1 MHz to 50 MHz . As тмз

${ }_{\text {tyins }}^{\text {tuis }}$

 £130
$\stackrel{\text { top }}{\text { tiM3 }}$

£145

tyme

£199
twise

LEVELL ELECTRONICS LTD. Moxon Street, Barnet, Herts. Tel. 01-449 5028/440 8686

WW - 023 FOR FURTHER DETALLS

Strongboxes

wireless world

What brings home the world's best broadcasting system at the touch of a button?

Simple

The OUADFM4

Simply write or phone for more information to
The Acoustical Manufacturing Co. Ltd., Huntingdon, Cambs. PE18 7DB. Telephone: (0480) 52561.

WW - 018 FOR FURTHER DETAILS

Engineering - or dominoes?

Production:
BRIAN BANNISTER (Make-up and copy)

Editor

Technical Editor GEOFF SHORTER, B.Sc.
$01-6613500 \times 3590$ Communications Editor: $01-6613500 \times 3589$

News Editor: 01-661 3500 X3587 Design Editor: Drawing Office Manager ROGER GOODMAN Technical llustrato
BETTY PALMER

Advertisement Manager BOB NIBBS, A.C.I.I.
01-661 3130
DAVID DISLEY
$01-6613500 \times 3593$
BARBARA MILLER 01-661 3500×3592

Northern Sales 061-872 8861

Midland Sales 021-356 4838
Classified Manager: 01-661 3106
01-661 3106
OPHELIA SMITH

During the 1940 s, at a grammar school in the north of England the most wonderful things on display in the glass case outside the science laboratories were a cloud of glass-fibre wool and some coal with a fossil leaf in it. The glass was impossible becaus everyone knew that glass was hard and
brittle and yet here was this soft thoug scratchy) stuff made from it, and the coal was just so unimaginably old - older, even, than the physics master who had some said, discovered fire. Simple things, lessons in the physics class.
In those days, there was little talk of wireless in the classroom, let alone 'electronics'; classes were taken up with interminable experiments on the latent plotting of magnetic fields. Then, one day a visiting teacher told the class of his wartime work on radar, speaking of microwaves, 'metallic insulators' and time measured in microseconds. This was a wool and bits of coal and led to rather a lot of daydreaming for some of the class. Science teaching has advanced greatly in the ensuing 35 years. Microcomputers are becoming commonplace and labs generators and all the other impedime of the electronic '80s. Pupils handle circuitry switching at 3ns or oscillator working at several gigahertz or truly compendious i.cs with remarkable
nonchalance, if the youngsters seen television programmes or in the news as competition winners are anything to go by.
It is, it goes almost without saying necessary for the modern pupii thave the right that programming microprocessors should have taken the place of connecting components, in school, as in the world of
work. A micro, given the correct data and program, will do exactly what is expected of it very efficiently, as can be verified by a glance at the storage oscilloscope or logic display, but where is the striving? And, without the striving, where is the lear Is there a danger of producing a great
number of people who call themselves electronic engineers but whose knowledge of electronics stops short at an ability to program and an awarene supplier of interfaces?
he only answer to all these weedy, half exactly what engineers will be like, and quite soon, too: there is no reason why they should be any different. It has been said for years that the microprocessor
component, to be used as any other component. There can be little adva to a user in knowing the precise details of the internal working of a micro - it can be regarded as a machine which wir doits when asked. It is not necessary to know use one to its fullest extent: neither is it absolutely necessary to know more tha the capabilities and characteristics of a micro, or any other i.c., to obtain the maximum performance from it. And wh
the remaining parts of circuits are also integrated, there will be no pressing need to understand the use of power transistors, or passive components, either, unless one has to design the i.cs. 'Systems
This is not, of course, to say that all engineers will be satisfied without a detailed knowledge of exactly what happens inside the i.cs. Perhaps these people will be the originators - the on who, because they know more of the i.cs with a greater imagination. But do not decry the simple user of modules: he will know all he needs to know
\qquad
\qquad 1.
教 I
 1
 , \because

MICROPROCESSORCONTROLLED LIGHTING SYSTEM

Stage and theatre lighting control is a complex task - yet a task easily handled by a microprocessor. As even the simplest of microprocessors can be programmed to provide and accept data for controlling a lighting system, these articles concentrate on using an existing microprocessor board to process and store complex lighting patterns set by existing microprocessor board to process and store complal data, to human input, to light dimmers. Software for the 8085A processor used in the prototype will be discussed in the
third and final article.

by John D. H. White and Niligel M. Allinson

This system is designed to simplify the control of complex lighting patterns as
used in theatres and studios or at pop concerts. The prototype described in these articles made use of a commercially available 8085 A processor board to control up to 256 lighting channels with 8 -bit accur-acy phase control. Here, we discuss the ize the relationship between lamp brightize the relationship betw.
ness and fader position.
Background
Before the introduction of high-power semiconductors the brightness of lamps in lighting systems was controlled by variable
resistors or inductors. The cost and size of such inefficient power-control methods meant that systems were kept small and were usually difficult to operate. With high-power thyristors, it was possible to
construct very compact dimmers which could be controlled remotely. Initially, this improved power control was used to copy the previous systems; however, the com mact naturere lighting systems could now be built and controlled. At present, "portable" lighting systems with 80 separate output channels are in common use for popgroup concerts and even larger systems employed in tv studios and theatres.
All lighting-control systems may be split into two separate sections - the powercontrol section (the dimmers) and the control desk, which is used to control the
dimmers. These are usually remote from dimmers. These are usually remote from cable. Although the size of lighting systems has increased over the years, the control facilities available have remained rudimentary. A small number of digitally
controlled desks are commercially availcontrolled desks are commercially avail-
able, though these are expensive and tend to be used in large, fixed installations. The most common type of circuit used in an analogue control desk is outlined in Fig. 1. Each row of channel faders
(presets) is voltage driven by a master (presets) is voltage driven by a master
fader (master preset). Outputs from each preset for a given channel are then gated together through diodes; thus the final

Fig. 1. This type of matrix is often used in analogue lighting-control desks. In this way,
lighting patterns stored at preset fader positions can be recalled using the master faders.

Flg. 2. Using this type of matrix, with plug-in diodes, a great number of lighting patterns can
be stor
be stored cheaply but the ability to vary lamp brightness continuously is lost.
output from the control desk is the largest preset voltage for each channel. In this way, each master preset can be used to
recall a stored lighting pattern (i.e. stored in a row of presets). Because of the cost of faders, the number of master presets is usually fairly small. For pop-group concerts and certain stage applications, the ability to control continuously the bright-
ness of each light is forfeited to allow the storage of a greater number of lighting patterns. The patterns are created and stored by positioning pins, containing diodes, in interchangeable matrix boards, as indicated in Fig. 2. hases (total power requirements may exceed 500 kW for a large system), a standard interface format between the control desk and dimmers is necessary. A direct voltage of $0-10 \mathrm{~V}$ has become the convention in
most lighting systems, 0 V corresponding to the lamps being off, and 10 V to full brightness. Figure 3 shows the schematic lay-out of a typical dimmer module. The a.c. control voltage is compared with a quency, hence phase-control of the load is ponssible. Before considering the output hardware, one other question that needs answering; how many control bits are required to give For a very wide range of lighting conditions, it was found that seven bits were sufficient for "stepless" light control. Since the microprocessor is an 8 -bit device and most of the integrated circuits used to
construct the system are 4 -bit devices, it was decided to use 8 -bit codes throughout. This also provides some immunity to the effects of truncation errors in the output code from software calculations.

Circuit description

Because of the large number of output channels each dimmer unit must be kept simple and economical. Also, since one
may wish to increase the number of output channels in the future, a modular design is advantageous. The overall output-control layout is shown in Fig. 5. Each dimmer module is enabled so as to accept data from the microprocessor data bus by a 2 -bit code derived from the 8 low-order bits of modules can be given a unique address. Conventional output ports could have been used to enable data transfer to each dimmer module: However, the 8085A proces-put-port instruction (OUT port) and this can only be used in a direct-addressing mode, i.e., the second byte of the instruction must contain the port address. The restriction of direct addressing makes this
method unsuitable for use in a lightingcontrol desk because of the large number of outputs required. The solution is to employ mapped-memory output, which
uses a section of "memory locations" for

Fig. 3. Outline of a typical circuit. A d.c. control voltage is compared with a ramp
synctron synchronized with the line frequency,
making phase control at the load possible.

CONDUCTION ANGLE, α
Fig. 4. Measured luminous intensity, as a function of conduction angle, for a 1000 W lamp (see text).

 $\xrightarrow{\text { Line }}$ trequency

Fig. 6. Address decoding and dimmer enable module.
output. This arrangement allows any instrucuons which write to memory to be erable advantages in the software as indirect addressing is permitted. A small amount of extra hardware is, however, required to decode the address lines to enable the outputs.
The digital equivalent to the linearvoltage ramp in an analogue dimmer is an
8 -bit binary code counting from 0 to 255 in each line half-cycle. The 8 -bit synchronous counter is clocked by 51.2 kHz signal de-
rived by multiplying the line frequency rived by multiplying the line frequency.
The counter is reset every line half-cycle by a zero-crossing detector.
Each dimmer module compares the latched 8 -bit code from the control desk to
the 8 -bit code from the counter When the the 8 -bit code from the counter. When the
counter output is greater than the controldesk code, a 51.2 kHz signal is applied to gate the thyristors, hence accurate phase control of the lamps is possible.
The complete lighting system will contain one address-decoding and dimmer-
enable module, one frequency-multiplier enable module, one frequency-multiplier
module, three counter and reset modules (one for each phase used), and one dimmer module per output channel.

Address decoding and dimmer enable module

The eight high-order bits of the address The eight high-order bits of the address bus are compared with a bit pattern set by
8 wire-links to determine the location of the 256 output addresses in the memory map. T,wo cascaded 7485 4-bit magnitude comparators, see Fig. 6, generate a highlevel signal when both inputs are equal.
This signal, the $M \overline{I O}$ and W / \mathbb{R} control signals and the system enable signal, \bar{E}, enter a NAND gate to give a signal which is high when valid output

data is present on the data bus. The 8085 A processor system employed in the proto type design was a Quarndon Electronics
Ltd. QMS 858085 development system which produces an overall system-enable strobe. \bar{E} will be low whenever the WR, RD or INTA of the 8085 A is low For "write" cycles, the data bus is stabl while \bar{E} is active.
The valid-data signal is used to strobe line demultiplexers connected to the eigh low-order bits of the address bus. Two dimmer enable signals, E1 and E2, from the 32 outputs of the demultiplexers, give modules.

Frequency multiplier module

A 51.2 kHz clock signal for the 8 -bit coun ters, shown in Fig. 7, is obtained by
multiplying the line frequency by 1024 . The phase-locked loop (NE565) has a feedback divider chain consisting of five 7474 dual D-type flip-flops. The capture range is set at $\pm 2 \mathrm{~Hz}$. The t.t.1. input signal to the phase comparator is at half-wave recti-
fied mains frequency. Although t.t.l. compatible, the square-wave output of the v.c.o. will only provide a current of about 1 mA , so the output is buffered to drive the counter and divider chain.

Synchronous counter and reset

 This circuit, shown in Fig. 8, generates 8 -bit binary code which counts from 0 to 255 in half a line period. The 51.2 kH used to clock two cascaded 74161A 4-bit counters. The CLEAR inputs of these counters are used to reset them at the zerocrossing points of the mains. The full-wave rectified a.c. is applied to the voltage comparator (741). The output of the op-amp isinverted and converted to t.t.1. levels by the following common-emitter stage.

Dimmer module

The 8 -bit code from the control desk, through the data bus, is stored in two 7475, 4-bit bistable latches, Fig. 9. These latches are enabled, i.e., data on the data bus is transferred to their Q outputs, when the dimmer module is addressed by its own 2-bit dimmer enable signal, E 1 and
E 2 . Data stored in the latches is compared to the output of the counter by two cascaded 7485s. When the count from the 51.2 kHz signal is gan the latch data, the 51.2 kHz signal is gated to the thyristors through some buffer stage and pulse transprotection is provided by the inductor and capacitor
System performance
Some advantages of feeding data to a large number of channels have already been mentioned. Also, since the access time for each dimmer is less than the 410 ns (the maximum data-bus access time permitted by the processor), no processor WAIT states are involved in trairsmitting data.
This, of course, maximizes'the data transference for updating the dimmers and WIRELESS WORLD APRIL 1982

Fig. 7.This circuit is used to multiply the $\mathbf{\Delta}$ line frequency by 1024 to provide a 51.2 KH
clock signal for the 8 -bit counters.

helps to produ
lighting system. highly interactiv output of the lamps with the position of the faders is indicated in Fig. 10. The output code FF corresponds to the lamp
being off, and the code 00 corresponds to being off, and the code 00 corresponds to is due both to truncation errors in forming the inverse function mentioned earlier and to slight measurement difficulties. It could be removed by incorporating a suitable perating point of view there are quit
distinct advantages in having a definite distinct advantages in having a definite
"lamps off" position on the faders. In the system, the 256 values of this inverse function are held in a "look-up table" in the operating software. For a non-micropro
cessor system, there is no reason why these cessor system, there is no reason why these
values could not be contained in a p.r.o.m The complete operating system not only provides routines for inputting and outputting data, but also various methods for processing the stored lighting patterns. In the next article, the control desk will be
discussed. To be continued

Fig. 8. Synchronous counter and reset from O to 255 in a half-line period is generated.

Fig. 10. The effect of linearizing the to the fader position.

Fibre optics at ITT
 optic splicing kit, the OFSK-10. Primarily in
tended for hhe iointing of 501125 mm telecommu nieations grade fibres and other fibres of an allsilica construction, the kit uses an electric arc to fuse together the two ends. A V-groove iig has
been developed to locate the ends accurately so been developed to locate ene end accurately
that very high quality splices can be achieved. Testing fibres in the field can also be a prob-
lem; in is very unlikely that the engineer has lem; it is very unikely that the engineer has
access to both ends of a cable but needs some method of locating a fault in a cable which car be up to 15 km long, between repeaters. An
answer has been provided by ITT in the answer has been provided by ITT in the
OFR-3, an optical fibre reflectometer. If a short pulse of high intensity light is launched into an -optical fibre, a small proportion of the light is reflected back towards the source from every
point in the fibre. The reflections are 'backscat ter' caused by imperfections in the molecular structure of the silica. The power of the re-
flected light, measured at the source end, decays exponentially with time, and by inference, wit exponencualy wish ume, and by inference, wit uses a laser to launch a pulse into the fibre and can measure and record the response from the
reflections. Joins along the cable can cause extra reflections causing a peak in the response. Faults in the cable will cause drops in the res ponse. The OFR-3 can display that response on
an oscilloscope which includes an alpha-numeric display of all the relevant parameters. With the use of a cursor any part of the response
can be looked at in more detail and the oscillocan be looked at in more detail and the oscillo-
gram with all the data display can be printed ou or permanent record. The 'scope and printe are incorporated into the equipment which all
fits into a portable case. All the controls and the its into a portable case. All the controls and the
lser are incorporated in the lid The laser fits

The OFR-3 can trace faults in an optical fibso

behind a locked hatch and cannot be switched unless connected to a cable. Any fault can be distance of 15 km . ITT are already working on the OFR-4 which will be able to inspec
of even greater length - up to 100 km . even greater length - up to 10 km. plications for fibre optics. There is a plan to link he British and French electricity grids. One hour's difference between ene cocks in the two
countries means that peaks occur at different umes and an extra boost can be provided across the channel. To avoid the need for frequency natching, the link will be d.c. G.E.C. are buil
ing the U.K. end of the link. Rectification will ing the U.K. end of the link. Rectification will
t different potential and will therefore have t using a number of isolating transformers, th witching pulses will be carried to the thyristo gates by fibre optics cables. A special cable ha een developed to withstand voltage potentias
up to $5 \mathrm{kV} / \mathrm{cm}$. In parallel with the de of up to $5 \mathrm{kV} / \mathrm{cm}$. In parallel with the de .e.d. edge connector array for providing the individual pulse firing signals for each thyrist
The link is to be commissioned in $1985 / 86$. Another new application is a cable television link which is to be given a trial by British
Telecom to 18 houses in Milton Keynes. Th elecom to 18 houses in Milton Keynes. Th f.m. (pulsed frequency modulation) in whic he tv signal frequency modulatate a square wave carrier which then drives an 1.e.d. source. A he transmitter and receiver modules includin supplied by ITT Leeds.
BT are already running a cable tv service in
Milton Keynes. For the trial, the programme Mirton Keynes. For the trial, the programme
are down-converted into baseband anid
serarated separated into individual channess (0 to 6 MH
PAL, video with sound). In addition a channel is formed consisting of the f.m. radio pro rammes on carriers in the range 0 to 7 MHz Each channel is fed to its own transmitter and en-fibre cable carries the channels to a distrib ary link contains fibre of better than $4 d \mathrm{~d} / \mathrm{km}$ loss and $400 \mathrm{MHz-km}$ bandwidth-distance pro duct. From the distribution point the secondary
ink of between 50 and 200 m goes to each cus mer. Signal information and channel selection re transmitted back from the customer's end to microprocessor control which provides th channel switching and can monitor information secondary links. In the home the signal is recived opticaly, demodulated to baseband and into the aerial socket of an ordinary tv.

WIRELESS WORLD APRIL 1982

555-TYPE INTEGRATED CIRCUITS

The 555 group of i.cs is one of the most popular ever made, with an enormous variety of applications in oscillators and timers. John Linsley Hood explains its internal design and method of operation

If the 1950 s were the decade in which linear electronic circuits, previously
implemented using thermionic valves as their active components, were progressively taken over by transistors, then the '60s were the decade in which such circuits, built up from an assembly of discrete components and transistors, were simple packages of purpose-built circuitry, simple packages of purpose-built circuitry,
containing all the necessary active and passive components in a single lump. The term 'integrated circuit' was coined at this time to descr
components.

component

whie it was the enormous progress in the field of digital computers; which convinced the i.c. manufacturers of the consumer market which provided the chance of market from the computer field.
The realization that there was a large potential market set the design departments of many of the larger semiconductor manufacturers exploring packages. Clearly, an i.c. functional block which could be used with a relay and a timing capacitor to provide time delays or timing cycles, as, for example, in a washing machine or a darkroom enlarger
imer, would have a lot of uses, and several such i.cs were evolved at the end of the 1960s. Of these, by far the most successful was the Signetics 555. A number of manufacturers have copied it in identical orm - in the process of what is known as
second sourcing' - and produced in dual (556), quadruple (558) and c.m.o.s. (ICM7555) versions, along with sundry improved devices having the same pin configurations, such as the LM555C. ubiquitous i.c. operational amplifier, few integrated circuits have had such an appeal
by J. L. Linsley Hood
to the hobby electronics constructor, with several complete books of circuits having applications for this device. Yet, in spite of this, to most of its users, its method of operation remains needlessly obscure, and many attempted applications founder on internal and external circuitry.

Circuit description

The 555 is fundamentally intended to give an output voltage waveform, as a 'oneshot or in a repetitive manner, at a low enough output impedance to operate a reasonably sensitive relay. To simplify which the time constant $R C$, in seconds, is the time taken for a capacitor C to charge through resistor R to 63.2% of the applied voltage - the internal voltage switching levels are chosen so that the external
timing capacitor charges through about timing capacitor charges through about diagram showing the internal arrangement is given in Fig. 1.

In this, the heart of the circuit is a bistable thip-flop with an external over-
riding reset input R. The two normal inputs are the threshold and the trigger connexions, both of which are fed in through relatively high-impedance buffer amplifiers, connected, respectively, to reference voltages of $2 / 3 V_{\mathrm{cc}}$ and $1 / 3 V_{c c}$, ,
derived from the 15 k resistor chain. Two buffered outputs from the flip-flop are provided through amplifiers \mathbf{A}_{1} and \mathbf{A}_{2}, the first of which is a normal 'totem pole' output arrangement, as typically used in t.t.1. logic, to give a fairly low output
impedance, and good current-sourcing impedance, and good current-sour, from A_{2}, is derived simply from a single transistor 'open collector' stage.
The way in which the 555 would normally be connected to operate as a one
shot' timer driving a relay, is shown in Fig 2(a). In this the threshold input and the discharge (open-collector amplifier) output are joined together, and taken to the junction of timing resistor R and timing
capacitor C; the timing cycle is initiated by

Fig. 2. 555 as a one-shot
manuial start and reset.

(a)

(b)
momentary operation of a push-switch connected to the trigger input.' This sets the Q output from the bistable, and both of the non-inverted outputs from A_{1} and
A_{2}, to a high state. In the case of A_{1}, this A_{2}, to a high state. In the case of A_{1}, this of A_{2}, the result will be that its output becomes an open circuit, so that the timing capacitor C is free to charge up towards the Once the Threshold input level has reached $2 / V_{c c}$, the 'reset' input to the bistable, R in Fig. 1 , is taken high, when it reverts to its initial state, with A_{1} output
'low' - so that the relay is de-energized and A_{2} at a low impedance. This holds the

WIRELESS WORLD APRIL 1982

Fig. 3. Connexion for a free-running oscillator, with a frequency determined by the constantcurrent source and the value of C

Fig. 4. Flip-flop block of Fig. 1 in logical form at (a) and in its practical arrangement at (b)

Fig. 5. Flip-flop ($\left(\mathrm{r}_{2}\right.$ and Tr_{3}) shown in relation to threshold, trigger and output circuitry.

Fig. 6. Input amplifier for threshold voltage.
uming capacitor discharged and at potential close to the 0 volt line level, ready for a further uming cycle to be initiated,
by an input at a level applied to the Trigger. The output waveforms are shown in Fig. 2(b).
Since the Trigger input is also taken to the bistable through a impedance buffer amplifier, it is practicable to connect this imposing too much of a static load. This will convert the circuit into a 'freerunning' sawtooth generator, with an output of $1 / 2 V_{\text {cce }}$ as shown in Figs 3 (a) and
3 (b). Moreover if the timing resistor R is 3(b). Moreover, if the timing resistor R is
replaced by an appropriate constant current source, the output at point A will be a highly linear waveform, suitable for use in a time-base generator, and with a sync. input availab at the override rese of the bistable.
simple arrangement, shown step a very in Fig. 4(a) and in its practical form in Fig. 4(b). In this circuit, if the input (1) is taken high, even momentarily, the output will
also go high and remain at that state. also go high and remain at that state.
Similarly, if the input is taken low, the output will also follow, and remain. The fact that the transistor circuit of Tr_{2} and Tr_{3} can be made to behave like this depends on the characteristic that a
transistor turned hard on will have a collector-emitter voltage drop of only some 0.1 to 0.4 volts, depending on construction and I_{b} and I_{c}, whereas the minimum voltage necessary at the base, for
conduction, will be at least 0.5 volts in a silicon device. The way in which this circuit is
organized, with respect to its output circuitry, and its threshold, trigger, and reset inputs, is shown in Fig. 5. Because the transistor Tr_{8}, in the reset circuit, acts positive end of D_{3} and the discharge circuit open-collector amplifier, this will cause Tr_{3} to be turned off, with Tr_{4} and Tr_{6} turned on. This will reset both A_{1} and A_{2} While this input, be
in the circuit than the trigger input, will over-ride the trigger signal, if the trigger input is held low, the circuit will revert to A_{2} open circuit, as soon as the reset signal is removed. The two input amplifiers used in the threshold and trigger circuits, are of similar form, as shown in Figs 6 and 7,
using Darlington using Darington connected, fourshould be borne in mind, as explained in the first article of this series on the 741, that the integrated circuit manufacturing process does not normally allow the the i.c., which have a very high current gain, except in the circumstance that their collectors are directly connected to the substrate, (which is normally the 0 V line). Since the input $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistors of the
trigger circuit do not meet this condition, they must be of the 'lateral' type, which gives in inferior input impedance to this amplifier to that of the $n-p-n$ input devices

WIRELESS WORLD APRIL 1982

Fig. 7. Trigger input amplifier, using p-n-p transistors.

Fig. 8. Improved trigger amplifier, using higher-gain p-n-p transistors and a current-mirror collector load for Tris
used on the threshold circuit input. To compensate somewhat for this deficiency,
the trigger amplifier input circuit is the trigger amplifier input circuit is Nevertheless, the input impedance for this circuit is still some five times lower than for the threshold input. In the National Semiconductor LM555, this circuit is ${ }_{8}$ modified, and improved, as shown in Fig. transistor, together with a current mirror collector load (Tr_{x} and Tr_{y}).
The complete circuit of the 555 is given
in Fig. 9, to show how the separate elements are connected together. Although the circuit is referred to in the data books
as linear, because its operation is essentially digital in form, switching rapidly from one stable state to another there is no need for any of the h.f. compensation of the amplifier elements customary in normal linear devices. This output, of the order of 100 ns , and Fig. 9. Complete circuit of Signetics NE555.

Fig. 10. Time delay as a function of R and C in Fig. 1.

Fig. 11. Variation of Fig. 3 oscillator frequency with R and C constant-- source replaced by R if sawtooth linearity not
important).
repetitive operat
approaching 1 MHz z frequencies Typical time delay and free-running frequency, graphs are shown, for
completeness, in Figs. 10 and 11 .

WIRELESS WORLD APRIL 1982

DIGITAL, MULTI-TRACK TAPE RECORDER

The final article in this series describes the motor speed control circuitry and the power supplies. The few modifications to the original tape recorder, used as the basis for this design, are also presented, with advice on adjustment of bias, equalization and signal level.

The VLF910 cassette tape-deck used in he Hart version of the Linsley Hood cascapstan drive, take-up spool and rewind spool. In spite of this, and though relaively cheap, its specifications are excellent and the success of the digital recorder design is due in no small part to this excellent
deck. The motor used is called a fre-quency-servo type and consists of a motor unit and tachogenerator. Earlier versions of the VLF910 deck used a motor, type generator which produced an a.c. output generator which produced an a.c. output al to its speed. When running at the normal tape speed of $17 / 8 \mathrm{in} / \mathrm{s}$, the frequency output was approximately 456 Hz . Later versions of the
ferent motor, type $M M \mathrm{M}$ which, instead of a tachogenerator, has a rotating magnetic disc attached to the motor shaft and an associated Hall-effect i.c. When running at a tape speed of $17 / 8$
in/s, the output on one of the pins of the in/s, the output on one of the pins of the
Hall-effect i.c. is a pulse train of frequency about 912 Hz . (Although the figure of 912 Hz is claimed as approximate with resResearch Department, London Transport.

by A. J. Ewins, B.Tech.

pect to a tape-speed of $17 / 8 \mathrm{in} / \mathrm{s}$, it is generator of the earlier motor).
Both motor types have additional builtin electronics to produce a closed-loop servo system. Although the motors are said
to be frequency-servo types, the speed of the motor is not locked to a reference frequency: the frequency so produced by the tachogenerators is converted to a voltage, using a pulse-width discriminator circuit, The then compared to a reference voltage. depends upon the stability of the reference voltage.
For accurate speed control of the taperecorder, the motor speed must be locked to a reference frequency. The importance
of this speed control is not so great during the recording process, but absolutely vital during playback to ensure that the temporary storage buffers are filled with data at precisely the same rate as they are
emptied. Short-term wow and flutter content of the data is not important because the number and length of the tempo-
rary storage buffers are designed to cope with this short-term variation. The block circuit diagram of the taperecorder speed control circuit was shown in Fig. 11 in part 2 of the series: Fig. 47 quency selector, v.c.o. and phase sensitive detector. The v.c.o. and p.s.d. are contained within the c.m.o.s. phase-lockedloop i.c., type 4046. So that the tape-recorder speed control can be seff-contained,
the v.c.o. is used as the frequency reference source in the absence of any external reference. Using the values for the timing capacitor and resistor as shown, the $5 \mathrm{k} \Omega$ variable resistor is adjusted to give an output frequency of 455 Hz . (This is the same
as the tape-clock frequency of $22,755 \mathrm{~Hz}$ divided by 50 .) In the absence of an external frequency input, the reset input to the 4017 counter will be at the logic 0 level. The output from the v.c.o. clocks the becomes logic 1 , disabling the counter. In this condition, the carry-out, CO , is at logic 0 . The output from Nand 2 is thus at logic 1 and the output from Nand 3 is the inverted v.c.o. signal. Nand 4 inverts this
signal yet again, presenting a non-inverted signal yet again, presenting a non-inverted
v.c.o. signal to the input of the Ex-Or

p.s.d., whose other input is that from the tachogenerator pulse shaper. When th phase-locked loop of the speed-control system is in lock, the frequency from the tachogenerator pulse shaper is exactly that of the v.c.o., but it leads it in phase by the D-type flip-flop is at the logic 1 level when the Ck input goes positive, putting a logic 1 on the Q output of the flip-flop, lighting the i.e.d. and giving a visual 'inoutput, the audible indicator is silent. In the event of a loss of lock the l.e.d. will flash and the audible indicator will warble at a frequency dependent upon the rate o slippage between the two frequencies. The output from the p.s.d. is passed to
the motor drive circuit of Fig. 48 (a) or (b) It is filtered by a lead-lag low-pass filter, consisting of the 100 k input resistor to the 351 op-amp and the 39 k plus $5 \mu \mathrm{~F}$ capacitor (lluF in Fig. 48(b)) feedback loop. The low-frequency gain of the
inverting op-amp is limited to unity by the 100 k feedback resistor. The resulting out-
put from the op-amp drives the motor via the emitter-follower circuit using a Dar ington power transistor, TIP121. The 10 k resistor and base-collector feedback capa citor of nF provide some necessary high frequency cut-off to the emitter-follower
stage. The values of the filter components were found by trial and error to produce a stable and trouble-free p.l.1. servo system under all conditions of Play, Rewind and Fast Forward operaion of he deck The direct offset voltage produced at the
output of the op-amp by the potential divider circuit on the non-inverting input is essential to the self-starting action of the servo system. The 20 k resistor should be adjusted such that the p.li.l. finds lock in Rewind or Fast Forward keys. If the voltage on the non-inverting input is too low, the p.1.1. will not find a 'lock', the

Fig. 48. Motor drive circuit and tacho pulse shaper. Version for motor Type R14-7430 O3Y8D is at an for motor Type R14-7430,

 O3Y8D is at (a), while that used for motType MMX-6H2LSB is shown at (b).
motor speed remaining too low; if it is to high, the loop will find and lose its 'lock' sat sped ending up too high. resisto a satisfactory setting for the 20 k resistor
has been found it will be observed that the tachogenerator waveform leads the v.c.o utput by a little more than the ideal his phase difference will change a litue under varying load conditions noty so much as to lose lock.
The tachogenerator pulse shaper circuit with the built-in tachogenerator, while that in Fig. 48(b) is for the motor with the mechanically coupled magnetic disc an Hall-effect sensor. Because the outpu om the speed sensing circuit of Fig. 4. (b) utput from the pulse shaper is divided by ${ }^{2}$.
C.m.o.s. circuits of Fig. 47 and the pulse shapers of Figs. 48(a) and (b) are powered from a 15 V supply, which is proby the cassette recorder's 20 V stabilized supply line. The 20 V supply powering the

motor drive circuit is that normall supplied to the positive lead of the motor, switche

Motor modifications

Both types of motor may be removed from their outer casings by careful removal of 03Y8D, the built-in electronics should be completely removed. The tachogenerator output is idenified by two yellow lead posts to which the internal p.c.b. is sol dered. The two yellow leads should be extended, and two wires, red and black, should be soldered to the two terminal posts of the motor, making certain which versal of these two motor connections will result in the motor running backwards, but no damage will be done.
With the back off the motor type MMXH2LSB, the frequency output of the fore any modifications are carried out. This is done by running the motorf from a nominal 12 V source and using an oscilloscope to identify the frequency output pin of the i.c. Having done this, remove the
power transistor of the built-electronics: this automatically breaks the internal servo loop. A low-value resistor from the positive supply line to the positive pin of the motor drive should then be removed, and a link made from the negative pin of the motor drive to the negative supply line. positive supply line of the built-in electronics, the positive pin of the motor drive, the negative supply line of the builtin electronics and the frequency output pin
of the Hall-effect i.c.

Use of the reference frequency

When operated with the rest of the digital electronics of the recorder, the reference frequency for the speed control circuit is
supplied by the 'reference frequency cirsupplied by the 'reference frequency cir-
cuitry', shown in block form in Fig. 11 of part 2. During the recording process, the
reference frequency is the TC frequency of $22,755.5 \mathrm{~Hz}$ divided by 50 , i.e. 455.1 Hz . nal frequency input of the motor speed control circuit, the internal v.c.o. source is automatically 'knocked-out'. The 4017 counter of Fig. 47 is continually reset by the presence of the external frequency
source with the result that CO remains at the logic 1 level and the 5 output at logic 0 . The external frequency source thus passes through Nands 2 and 4 to the input of the p.s.d., the output of Nand 3 being permanently maintained at logic 1 .
presented to the speed control circuit is that from a v.c.o. whose output frequency is dependent upon the average voltage at its input, which is the filtered output of a p.s.d. comparing the crystal-controlled TC
with the recovered TC from the recorded data of one track of the tape-recorder. Thus, on playback, the speed control of the tape is maintained by a p.l.1. servo system within another p.1.1. Some readers
may think this a very curious system and may think this a very curious system and
wonder why the output from the p.s.d. comparing the crystal and recovered tapeclocks is not simply connected to the motor driver circuit. The answer to this is that the dynamics of the record and On record, the tachogenerator is directly coupled to the motor, but on playback the recovered tape clock is mechanically coupled to the motor through the capstan and belt drive. It is not impossible to method, but it is very unstable and easily disturbed, losing lock, by any vibration of the deck. The solution used here is very much more satisfactory, offering as it does a very convenient method of switching
from one reference frequency (on record) to another (on playback). by having a very much lower natural frequency for the p.1.1. of the reference frequency generator than for that of the motor speed control circuit, the instability produced by the belt drive
mechanism is removed and there is no instability produced by one p.1.1. upon the other.

Power supplies

The Hart version of the Linsley-Hood cassette recorder is mains-powered but can
very conveniently be made to operate from a 24 volt d.c. source. Because there was a requirements for the recorder to be operable independently of a mains supply it was
decided that it, too, should be capable of decided that it, too, should be capable of
operating from 24 volts d.c. As a result operating from 24 volts d.c. As a result,
the power supply of Fig. 49 was designed the power supply of Fig. 49 was designed
and constructed. Since a very large number of c.m.o.s. i.cs are used in the digital circuitry it was decided that they were worth protecting from any overcircuit was added: in the event of an overvoltage spike, the thyristor is triggered, causing the fuse in the positive supply rail to the 7815 regulator to blow. An overvoltage of approximately 16 vol
to trigger the 'crowbar' circuit.
A switching inverter circuit, shown in Fig. 50, is used to generate the negative rail voltage. The heart of the circuit is the 78540 switching inverter. Using the values indicated, the output voltage from the
switching inverter circuit across the $47 \mu \mathrm{~F}$ capacitor should be approximately -18 volts, at a load current of about 120 mA .
This type of switching inverter does not operate very well under varying load conditions, so a shunt regulator is used to drop
the -18 volts to -15 volts. Approximately 100 mA is drawn from the -15 volt rail by the various analogue and digital i.cs in the circuitry: there is thus no need for the 2N3053 transistor to be fitted with a
heatsink. The 2N2905 transistor of the heatsink. The switching regulator also dissipates little power and needs no heatsink.

Modifications to tape-recorder

 The Miller-coded data recorded onto tape pulses, ranging in frequency from about 5.5 kHz to 11 kHz , which should be modfied, or distorted by the recorder as little as possible. The transient response of theFig. 49. Power supplies.

tape-recorder is more important, in its pre-
tape-recorder is flare important, in its pre sent use, than a flat frequency response.
To obtain the desired record/replay characteristics, the signal level, bias level and equalization must be adjusted. Firstly, the frequency response of any tape-re-
corder is the wider, the lower the signal level recorded. In normal use, the level of the signal to be recorded is a compromise between frequency response, distortion and signal-to-noise ratio: too high a level results in distortion and too low a level nal-to-noise ratio is not a problem in the present use of the tape-recorder since the Miller-coded data is recorded at a constant signal level with no amplitude variation. improving the quality of the signal in terms of frequency response and distortion, provided, of course, it is not reduced to a level where noise imposes itself on the signal.
The level of the high-frequency bias can have a considerable effect upon the recorder's frequency response; high levels of
bias producing an attenuation to the high bias producing an attenuation to the high
frequency signals but some reduction in distortion.
Finally, adjustment of the equalization Finally, adjustment of the equalization
characteristic has a great effect upon the amount of high-frequency pre-emphasis and modifies considerably the transient response of the recorder.
In addition to all the possible adjustments mentioned, it must not be forgotten importance. The author formed a considerable liking for Maxell UDXL II cassette tapes, both C60s and C90s. It is a CrOtype tape, requiring a high bias level and a
70 us equalization characteristic and has all the usual advantages of good frequency response, etc. The cassettes are also very sound mechanically. This is not the only suitable tape available - other tapes may perform just as well - but the tape reHaving satisfactorily adjusted the tape-recorder to operate with the digital electronics, other brands of tape may be tried to determine their suitability.
When I began recording the Miller-en-
coded data on to tape to discover how Coded data on to tape to dis

the recorder performed, a problem occurred with the transport mechanism that was not immediately appreciated. The replayed signal, having passed through the peak detector and Miller decoder, was
found to contain errors in the data stream which were initially thought to be due to the recorder's limited frequency response. Consequently, I experimented at length with the various adjustments mentioned earlier. Subsequently, the main reason for
the errors in the replayed and decoded data was found to be due to jerkiness in the take-up spool of the tape-recorder, which was caused by incorrect operation of the slipping-clutch mechanism driving the take-up spool. The slipping-clutch was
not, in fact, slipping, but the brass bush on not, in fact, slipping, but the brass bush on
the end of the slipping-clutch spindle, in contact with the rubber-tyred pulley of the take-up spool mechanism, was slipping jerkily. The problem was effectively cured by taking the slipping-clutch mechanism
apart and 'weakening' its compression spring. The author is pleased to be able to say that a second tape-recorder, bought from Hart electronics at a later date, has a cassette deck with a modified slippingclutch mechanism that gave no such prob-
lems. However, as a result of this fault, the author discovered a number of adjustments that should be made to the recorder to improve its record/replay characteristic of the Miller waveform.

- The 0 dB recording level of 2.25 volts r.m.s. at the output of the by about 4 dB to 1.42 volts r.m.s. which corresponds, on playback, to an output from the replay amplifier of about 250 mV r.m.s., i.e. 4 dB down on the original 400 mV level. Th be adjusted accordingly for a OdB reading when the output from the recording amplifier is 1.42 volts r.m.s.
- The amount of high-frequency pre-
emphasis should be reduced to a minimum by adjustment of Vr_{2} to maximum resistance on the recording amplifier board
- The bias oscillator frequency should be raised from about 55 kHz to nearer 80 kHz by replacing the capacitor, $\mathrm{C}_{23}(10 \mathrm{nF})$, of the bias oscillator circuit with one of 6.8 nF and by 200 ohms.

The $70 \mu \mathrm{~s}$ record/playback equaliza tion characteristic should be used and a slight improvement may be obtaine by changing the valve of C_{6}, on
replay board, from 27 nF to 18 nF .

- The bias level should be high with the 47 k variable resistor adjusted fo the highest level possible. This should the junction of the 47 k variable resisor, and the 220 pF capacitor C_{20} (L or R), of about 10 V r.m.s.
The actual bias level does not appear to be very critical, but a high level produces a steadier signal, on replay, with less amplitude flutter. As the recorded signal has no
low-frequency content below 5.5 kHz the erasing effect of a high bias is of little consequence and the reduced distortion probably beneficial.
With all the above adjustments carried out, and the cassette deck operating in a mechanically satisfactory manner, little or no errors should be observed in the resulting replayed decoded data. Those errors
that do occur should be due only to imperfections in the tape.

This concludes the series of articles. Stripboard layouts prepared by Mr Ewins are available in photocopy form: please write,
including a large, stamped and addressed envelope, if you would like copies.

50MHz stays good

In the February WoAR I suggested rather prematurely that "fewer transatlantic sig. nals have been heard on 50 MHz this winter although some $28 / 50 \mathrm{MHz}$ cross-band Baker, GW3MHW, near Aberystwyth, Dyfed, a devoted 50 MHz enthusiast, feels my comment does less than justice to what, in his view, has proved to be an even more fascinating period than two years ago
at the peak of Sunspot Cycle 21. Then, he admits, there were outstandingly strong
50 MHz signals that enabled a number of 50 MHz signals that enabled a number of
British amateurs to work all ten American British amateurs to work all ten American
"call areas". Altogether some 150 British "call areas". Altogether some 150 British
amateurs and more than 20 other Western amateurs and more than 20 other Western transatlantic cross-band working. A few European stations, including about a dozen in Holland, were permitted to ransmit on 50 MHz .
Good results were also achieved during teal Americason, with rather more Cenhigh hopes and Caribbean signals. No high hopes were held for the 1981-2
season, yet GM3MHW proved as good, in its way, as the two proved as good, in its way, as the two
previous years: a few openings in late Oc provious yaars: a few openings in late Oc-
tober, daily openings throughout November (except November 7), almost daily in December, and occasional openings in January 1982. On January 27, GW3MHW made his 449 th cross-band contact for the of the two preceding years, including many Caribbean and South American stations. Ken Ellis, G5KW contacted 48 of the American States. Several British amaCanadian VE1ASJ.
These results, two years after the peak of Cycle 21, are being regarded as so encouraging that it is proposed to publish a regular newsletter for 50 MHz enthusiasts payment to cover postages and stationery).

The GaAs mosfet

The current availability of lower cost gallium arsenide f.e.t. devices, including dual-gate mosfets at around $£ 5$ or less,
means that receivers with noise figures of under 1 dB and with good dynamic range can now be achieved by amateurs on 144 and 432 MHz . Devices include the 3SK97 and 3SK98 developed in Japan for use in
television receiver tuners but it io believed television receiver tuners but it is believed available from European firms. For example, D. J. Robinson, G4FRE, has measured 0.9 dB noise figure with 18 dB gain (circuit, not total system figures) at ${ }_{\text {teur }}^{430 \mathrm{MHz} \text {. On }}$ 144MHz the French amaend comprising a 3 SK 97 r.f. amplifier,

MD151 doubly-balanced diode mixer and P8000 impedance-converting grounded gate amplifier, followed immediately by a
9 MHz crystal filter. These GaAs mosfets are roughly one-quarter or less of the cost of most high-performance s.h.f. gasfets. Further advances in the field of super low-noise GaAs mosfets have been reported recently by Hughes Aircraft who,
with laboratory devices, have achieved a noise figure of 1.3 dB with 10.3 dB gain at 12 GHz . The GaA s mosfet seem destined to play an increasingly important role at frequencies from about 100 MHz upwards.

From all quarters

Following the example of the British
teletext services, the Dutch Teleteks service by NOS now includes a page of information for the transmitting amateur. When last November an incendiary set fire to a key telephone exchange in the Lyons area of France, some 50,000 telelines, were put out of action, local radio amateurs provided a special emergency communications service, handling urgen calls filtered through the police to ensure nature. They used h.f. bands and the FZ8VHF repeater.
Kathy Marsh, VK5NKM, the only amateur in Coober Pedy, an opal-mining town in central South Australia, operate freet underground. Such buried homes fashioned from former mines are popular in the township since they avoid the high summer surface temperatures (almos $50^{\circ} \mathrm{C}$) yet remain comfortably warm in
winter. Australia has some 15,000 licensed amateurs in a population of about 15 milamateurs in
lion people.
Shortly a
Shortly after Australian amateur Ray Naughton, VK3ATN, had climbed to the 45 ft level of his 110 -foot mast to make
everything secure during a gale, a 100 mph gust collapsed the tower. He escaped with some broken bones and a stay in hospital. The Reseau des Emetteurs Francais has warned its members that some French c.b. associations are making demands on ama432 MHz bands. The society recommend that amateurs should show that they ar making full use of these bands.
IARU Region 1 reports that the Irish Radio Transmitters Society will be 5 years old in June but can trace its beginin June 1913. First president of IRTS was Colonel J. M. C. Dennis, E12B (formerly DNX) who is widely believed to have bee sional experimental wireless station, estab lished in 1898. During World War II,
those Irish amateurs who were not enlisted in the Forces, offered their services as lis

Awards knocked

Bill Verrall, VK5WV, writing in Amateur - Radio, has strongly attacked many aspect of the emphasis on DXCC and othe "award collecting" by amateur radi has led to such abuses as: "dx nets" claim ing exclusive occupancy of spot frequen cies; an increasing amount of deliberate jamming and interference; use of illegally "rare" stations that spreads interferenc rare stations that spreads interference
over many channels; blatant soliciting for "dx-pedition" funds and extraction of payment for QSL cards; and the use of QSL cards bearing political or "religious" recognition of uninhabitable rocks and reefs as "countries" and the risks that this involves for those who set up stations a locations which may at times be entirely covered by the sea; "bootleg" QSL cards
that may be entirely fake, or sent or sold to stations with which no contact has been made; and the widespread use of a stan dard RS(T) report of $59(9)$
$\underset{\text { Presiden . Wolfenden, VK3KAU, Federal }}{ }$ president of the Wireless Institute of Aus
tralia, has pointed out that despite the growth in the number of training courses by clubs and educational bodies, newcomers still need more practical assistance from active and competent amateurs of experience: "the newcomer has to learn
the ways of amateur radio, the procedures and the standards, and the various gentle man's agreements about such matters a band plans, correct repeater operating, et ". . only a few clubs provide practica

In brief

Gerald Stancey, G3MCK identifies the Gerald Stancey, G3MCK identifies the
"Early French Resistance suitcase set" in Toulon museum ("Clandestine Radio the early years" February issue) as an early SOE equipment Type A, Mk II and raw attention to a book published in France F2WL which includes details and circui diagrams of a number of British and German suitcase sets. The photograph by the way was taken by Dick Rollema, PAoSE Sandown Park, Esher, on March 20 . . The Northern Amareur Rarch 20 Exhibition is at Belle Vue Leisure Park Manchester, on April $4 \ldots$. Plymouth
Radio Club has its third annual rally at Radio Club has its thirr annual rally at
Tamar Secondary School, Paradise Road, Tamar Secondary School, Paradise Road,
Millbridge, on May $30 \ldots$

WIRELESŚ WORLD ÁPRiL 1982

E.P.R.O.M. PROGRAMMER

Most commercially available e.p.r.o.m. programmers are expensive as they include software and other facilities to enable them to be used on their own. The existing microprocessor system, as will be shown in these articles. The design presented is for 2708, 2716 and 2532 e.p.r.o.ms, but with small modifications other devices may be programmed.
by H. S. Lynes

Sooner or later, probably all serious micremputer system usersin her program in epror mable read-only memory. Unfortunately commercial e.p.r.o.m. programmers are expensive and include facilities not essen tial for the enthusiast, who usually only wants to program the occasional device. main categories: those in the first category are expensive, have built-in data/addres display and use 'personality' cards for programming different e.p.r.o.m. types pensive. They have all the facilities of programmers in the first category but als include built-in v.d.u., tape interface printer port, etc. All these programmers use comprehensive software and have larg e.p.r.o.ms to be copied or modified at will. But if an existing microprocessor system is used to control an e.p.r.o.m. programmer these facilities are unnecessary,
I therefore explored the possibility of to an existing system. The first problem

*pulsed

Pin numbers
\qquad
$\times \quad x+5 v^{*}-0 v^{*}+25 v$
Pins 18,19 are used for the address
Pin 20 is 10 ase Pin 20 is LOW during during WRII
with 25 volts applied to pin 21 .

PC7	PC6	PC5	PC4	PC3	PC2	PC1	PCO	Hex
logic	n.c.	$\begin{gathered} 26 V \\ 18 \end{gathered}$	$\begin{aligned} & 12 \mathrm{~V} \\ & 20 \end{aligned}$	n.c	n.c.		${ }_{23}$	
0	-	0	0	-	-	\times	\times	00
0	-	$\begin{aligned} & 0 \\ & { }_{1}^{\circ} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	-	-	$\begin{aligned} & \times \\ & \times \\ & \times \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	10 30
logic	$\underset{20}{*}$	$\begin{gathered} 25 \mathrm{~V} \\ 21 \end{gathered}$	n.c.	18.	19	$\begin{aligned} & \text { address } \\ & 22 \end{aligned}$	23	
0	0	0	-	0	\times	\times	\times	00
0	1	1	-	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	60 68
logic	$\stackrel{*}{20}$	$\begin{gathered} 25 \mathrm{~V} \\ 21 \end{gathered}$	n.c.	18	-19	${ }_{22}$	23	
0	0	0	-	\times	\times	\times	\times	00
0	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	-	$\begin{aligned} & \times \\ & \times \end{aligned}$	$\begin{aligned} & \times \times \\ & \times \end{aligned}$	$\begin{aligned} & \times \\ & \times \\ & \times \end{aligned}$	$\stackrel{\times}{\times}$	$\begin{aligned} & 60 \\ & 20 \end{aligned}$

Notes: The hex. value is the code, or 'pin-profile', used for port C , ignoring the address. When programming 2716 and 2532 e.p.r.o.s, pin 21 is held high during the read cyclee. Functions marked with an Where x is given, both horgic levels are used for addressing. PC7 is used to detect the high-

Fig. 1. The three e p ro.ms for which the programmer was designed with tables showing control and programming logic requirements. WIRELESS WORLD APRIL 1982

encountered was that programming requirements for different types of here is no standardization in pin configuations. So, taking into account the opularity, price and availability of variou grammer should be designed for 2708 and 276 (5V supply) e.p.r.o.m. types. As the 2532 looked promising at that time it was, also included. The latter device is similar programming requirements, although its inclusion meant that an additional address ine would be needed. Design objectives were thus as follows:

$2048 \times 8 \quad \begin{aligned} & \text { pulse, sequential pro- } \\ & \text { gramming }\end{aligned}$
2716 (5V) : 2048×8 50ms t.t.l. p ming pulse, bit
selecteble selectable
ming
50
4096×8 50 ms t.t.l. program-
ming pul se, bit
selectable program selec
ming
For the 2708 , I used data published by p.r.o.ms at length. This data was used to

Table 1: Wiring from the 8255 p.p.i, and supplies to the e.p.r.o.m. programming supplies to the e.p.r.o.m. programming
board. Lines with prefix PA are for addressing and lines with prefix PB are for data. Prefix PC denotes lines used for both

E.p.r.o.m. socket pin numbers	Supply and p.p.i. lines
1	
${ }_{3}$	PA5
4	${ }^{\text {PA }} 4$
5	${ }^{\text {PA }}$ 3
6	PA2
	PA1
8	PAO
10	PB0
10	${ }_{\text {PB1 }}$
11	P82
12	$\mathrm{ol}^{\mathrm{OV}}$
13	PB3
14	P84
15	
17	PB7
18.1	PC5 +12 V
$\left.{ }_{20}^{19}\right\}$ for 2708s	$\stackrel{+1}{\text { PC4 }}$
21	-5V
22	PC1
23	PCO
24	+5V
$\left.{ }_{(19)}^{(18)}\right\}$ for 2716/2532s	${ }_{\text {PC2 }}$
	$+30 \mathrm{~V}$
	PC7
$\left.{ }_{\text {(21) }}^{(20)}\right\}$ for 2716/2532s	${ }_{\text {PC6 }}^{\text {PC5 }}$
(21)	${ }_{\text {PC4 }}$
	${ }_{\text {Reset }}$
	R/5 +5 V
	02
	spare

Fig. 2. Simplified block diagram of the programmer.
define the programming pulse rise-and-fall time limits of $0.5 \mu s-2 \mu \mathrm{~s}$. For the 2716 Mostek data was used (which agrees with Fairchild and Hitachi data), and for the 2532, Hitachi data. The latter manufacturer's data was easiest to understand ${ }^{\star}$. Pin configurations and given in Fig. 1.
gh these three devices are at pre sent the most popular, readers designing new systems using e.p.r.o.ms might want to omit the 2708 programming facility, since one 2716 can be obtained for less
than the price of two 2708 's. Furthermore the 2708 must be programmed in small

This could be a useful tip for aspiring tech

 *This could be a u.nical writers - Ed.
tages sequentially - a process often called 'spray-coat' programming. This is inconvenient when developing using $1 \mathrm{~K} \times$ 8 devices but if 2 or 4 K devices are used, the method is intolerable. Fortunately, later devices may be programmed bit-by-
bit as required. Inclusion of the 2532 programming facility is now justified, since it can be obtained for less than the price of two 2716's. The reasons for not including he 1702 among the chosen e.p.r.o.ms are that in my view, programming of it resive and it cannot be used with the software for the chosen devices in read mode. The programmer was designed for use with a 6800 microprocessor system but is

IRELESS WORLD APRIL 1982
heral interface (Intel or National Semiconductor). Some extra logic is required to drive the 8255 control pins but this p.p.i. provides three 8 -bit ports and programming is relatively simple. If the been required and programming would, in my view, have been more difficult: there is my view, have been more devifics should not be chosen for their ability to fulfil objec-
The 8255 is used in mode 0 (see manufacturer's data for further information) with the 8 -bit ports A and C as outputs and port B as either input or output depending on the control word stored in one of the device's four memory locations. By chang-
ing port B from output to input it is posing port B from output to input it is pose.p.r.o.m. has been correctly received. This function corresponds to the verify function of expensive programmers.
Since e.p.r.o.m. bits are all at logic 1 when the memory is empty, it would be available in partly full 2716/2532 devices. Unfortunately, the 6800 uses instruction FF to store the index register so confusion could result if the end of the existing address.
It is advisable to finish programs with It is advisable to finish programs with program over the top of an existing one.

Fig. 4. Address decoding for the 8255 an
one other device (see text).

Fig. 5. Circuit for selecting the most significant digit of the p.p.i. address (see Fig. 4).

State BPROM
2708 NV N
2716
2732

Read-? N
Write? Y

RaH start 0400

RaM finish 1400
EPROM start 0000
finish 1000.

2532

Press 6
This photo is an example of the author's display and illustrates the type of prompting that This photo is an example of the author's display and oroprocessor systems, a full softwar
may be sed. Because of the differences between micro
listing is not given, but a 'scratch-pad' and software outline will be included in the next listing is
article.

Also, a careful note of the current program state of each e.p.r.o.m. should be made. their history. Figure 2
grammer, and logic conversion for driving the 8255 s RD and WR lines from the 6800 s shown in Fig. 3. If an 8080 processor is conversion is not required.
The 8255 address, see Fig. 4, requires four consecutive locations. In my system the address is fully decoded, but the four most significant address lines can be al5. The four locations are from X 500 to X 503 , where X may be from 0 to F depending on the d.i.l. switch setting. Being
able to change the address is useful if the ale to change the address is useful if the 8255 is to be used as a general purpose e.p.r.o.m. programming

Table 1 shows lines from the p.p.i. to
he board on which the programming $2716 / 2532$ functions and a 2708 and 2716/2532 funcions, and a vage regula21 of the programming socket are shown connected for programming the 2708. In practice, pins 18 to 21 are connected to a $4-$ pole, 2 -way d.i.1. switch so that they may be taken to PC3, PC2, PC6 and PC5 resbe programmed. PC5 is a 25 V signal and PC4 a 12 V signal, the conditioning circuits of which will be shown later. PC7 is used to check logic but it could be used to detect changes on pins 18 to 21 , or even omitted
to reduce the number of lines from the p.p.i. circuit to the programming board. 37 lines were used, as shown in the table but by omitting unwanted lines, combining the 0 V rail and bringing in the 30 V supply separately, the total may be re-
duced to 30 . To be continued

IN OUR NEXT ISSUE

Digital filter
 design

Accuracy, versatility and a rapidly declining cost will ensure that digital filters take over from their analogue counterparts. A new series gives their theory, design techniques and microprocesso
implementation

Program exchange by telephone

There is a growing need to facilitate the easy exchange of programs and data from one person to another. Philip Barker discusses program distribution and the design and
implementation of software systems capable of loading source code programs into memory.

Orchestral sound,

halls and timbre
Taking the Kingsway Hall as a model, Denis Vaughan investigates the effect of concert hall shapes and sizes, and the working of the filtering of the outer ear on timbre and perceived
directionality.

On sale
 April 21

N S N/S

Polytechnical computer

The opening of the new computer centre at
Coventry Lancester Polytechnic was accompa-nied by a civic reception and a protest demon nied by a civic reception and a protest demon
stration by some of the students. The centre has been constructed to house two Harris computers which provide impressive processing power
with storage capabilities for a high volume of witu storage capabiintes for a digh voume of
batchwork and can service some 100 terminals distributed over the Polytechnic campus. The centre incorporates a Harris 800 compu-
ter system which has 2 megabytes of memory, ter system which has 2 megabytes of memory,
with four 300 -megabyte disc drives and one $80-$ megabyte disc drive, a line printer, card reader,
a 9 -track magnetic tape unit and a CIL ploter a 9 -track magnetic tape unit and a CIL plotter.
Also housed in the same building is a Harris H500 computer, a separate system with on megabyte of memory and one 300 -megabyte
disc drive with a line printer, a card reader disc drive with a line printer, a card reader, a
magnetic tape unit and a paper-tape reader/-
punch.
Elsewhere on the campus is a Harris H100 for Elsewhere on the campus is a Harris H100 for
the polytechnic's Electrical and Electronic Engineering department. Eventually it is planned to connect all three computers together by synchronous links into one processor network. The system is the biggest Harris system
outside the United States and is claimed to be

The Computer Centre at Lanchester Polytechnic, Coventry, speecially built to house the computer facilities, including the
two Harris Computers and some special terminals.
the largest available to any further educational The student protest w
The student protest was very civil and was
not about student grants, despite the presence
of the Parliamentary Under-secretary of State,
Department of Education and ccience, Mr Wiil
liam Waldegrave; it was about the delay in getliam Waldegrave; it was about the delay in get-
ting the computer actually working, their work

 as only a few were actually runing. Halis
assured us that these were teeching problems
and that they were flying a team of specialists and that they were flying a team of specialists
from their factory in Florida to assist in the initialisation of the system.

Timex to sell Sinclair in the U.S.A.

You may know that the Sinclair ZX81
Microcomputer is manufactured under a subcontracting agreement by the Timex Cor poration in their Dundee factory. The curren
production rate is about 30,000 units each production rate is about 30,000 units each
month, which some clever mathematician has

worked out to be one unit every ten seconds.
Timex seem to be impressed by the sales and Timex seem to be impressed by the sales and
have come to an agreement with Sinclair Rehave come to an agreement with Sinclair Re-
search, whereby they can sell a Sinclair/Timex computer in North America. Sinclair are at pre sent selling in the U.S. by mail order at a rate of

15 thousand a month; Timex have abou 170,000 retail outlets in North America, and The agreement is for Sinclair to provide the technical expertise and for Timex to manufac ture a computer which will include their own brand name. The name is not to be bocrep promi-
nent than the Sinclair marque which will remain nent than the Sincl
on the equipment. Timex will pay. Sinclair a 5% royalty on all hardware that is related to the Sinclair
microcomputer, even if it is not originated by microcomputer, even if it is not originated bn
Sinclair. They will also pay a 5% royalty on any Sinclair originated software. And they will even
pay $21 / 2 \%$ on software from any other source as pay $21 / 2 \%$ on software from any other source as
long as it is intended for use on the Sinclair equipment. There will be a ccros-licensing
agreement for any hardware that Timex may agreement for any hardware that Timex may
develop themselves. develop themselves.
Clive Sinclair says that he has been looking for a large marketing outlet for his products for
some time. He intends some time. He intends to keep Sinclair Research
as a compact research and development team,
and as a compact research and development team,
concentrating on improvements to existing pro-
ducts and development of new ones. The date ducts and development of new ones. The date
for the probable launch of the Microvision flat
tv is given as the last quarter of 1982. It has tv is given as the last quarter of 1982. It has
already been announced that the tv is being already been announced that the tv is being
incorporated into a desk-top terminal for IUL, incorporated into a desk-top terminal for ICL,
and there may be some clue as to the likely format of the next-generation ZX computer in
that. Sinclair's research into electric vehicles is continuing.

The Sinclair ZX81 which is to be manufactured, and marketed in North
America, by Timex. The Z 81 is shown together with the add-on 16 K RAM pack
and the ZXPrinter. and the $Z X$ Printer.

 seven presest stations and occcasionally to tune in to a station not already programmed. A bar grap
displays signal strength and centre tuning. The preset buttons and
controls: the microprocesssor takes care of evervthing else. controls: the micropprocessor takes care of everththing else.

Teletext, a new campaign

One way to mass market viewdata is believed
to be the growth of private viewdata systems which are compatible with Prestel; used by companies for in-house systems. Another way is
the development of a more attractive Preste package for the consumer.
It was decided at the c It was decided at the conference that Prestel

- working towards a consumer package, providing an overall viewdata service whic
would include transactional applications, i.e. would include transactional applicaions, i.e.
the ability to order goods by pressing the appro priate buttons;
- including entertainment and communica - examining the traigiff structure;
- working towards a reduction in the cost of ewdat receivers
- improving the quality and attractiveness of
- promoting new applications of busines viewdata;
- working towards the acceptance of viewdata as the principle means of
tween business and industry
Further analysis of the view expressed at the conference will lead to the publication of another 'action document'. October has been tober last year, this will be used for an intensive campaign to promote teletext.
1982 is Information Technology Year, and as part of the Government's commitment to IT the Department of Industry is promotin
further awareness of Teletext and Viewdata. According to a survey published in Prestel (page 19191), 65% of the population now know what Ceefax is; for Oracle it's 55%, teletext,
50% Prestel 30% and viewdata 15%. There are 50% Prestel 30% and viewdata 15%. There are
still 20% who have no knowledge of any o
these Television view these. Television viewers with facilities to re-
ceive teletext numbered over 30000 . ceive teletext numbered over 300,000 at the en
of 1981 .

This is a result, claims the DoI, of the promo54

Arthur C. Clarke

 honouredThe science writer, Arthur C. Clarke has been chosen to receive the eighth Marconi Fellowship
Award by the Marconi Fellowship council The $\$ 35,000$ award is given annually in Tecognition of scientific achievement for the benefit of humanity in the field of communicaions science and technology
Clarke predicted the ge Clarke predicted the egeosynchronous com-
muniations satellite a searly as 1945 in the Wireless World article "Extra-terrestial relays: rage?". We issued a reprint of the article with rage?". We issued a reprint of the article with
our October 1981 issue. In it he addressed very specifically the technical issues involved in such satellites, which have since become such a si
ficant part of the earth's communications. Clarke's other innovations include the use of satellitite plataforms for observing the earth in a quantitative manner, the concept of the ma-
noeuverable solar sail for low-acceleration interplanetary flight, and the concept of the 'space erplanetary sight, and the concept or the space
elevaror for reaching orbital altutudes using materials of very high strength/weig
which are likely to be developed soon.
which are likely to be developed soon.
Recenty, Arthur C. Clarke has been strongly
supporting proposals for the use of satellites for supporting proposals. for the use of satellites for
communicating with remote communities communicating with remote communities. Many such systems have b
lages in Alaska and Canada.
As far as the general public is concerned,
Clarke is best known for his science fiction Clarke is best known for his science fictio
writings, especially for his collaboration with writings, especially for his collaboration wit Rumour has it that they are to work together gain on another s.f. film
Mr Clarke is now the Chancellor of the Uni-
versity of Moratuwa in Sri Lanka. versty o Moratuwa in Sri Lanka.
The Marconi International Fellowship was ounded in 1974 by Gioia Marconi Braga daughter of the Italian inventor, Gughielomo
Marconi. It is sponsored by companies and
Licence sensation
There is a belief that the Home Office has made another "snafu" and will be forced to rescind
part of a new schedule which appears to contain part of a new schedule which appears to contain
a host of technical errors and misreading of the a host of technical errors and misreading of the
International Radio Regulations. A four-page Home Office announcement appeared in the
London Gazette on February 12 addressed to London Gazette on February 12 addressed to "all holders of Amateur (Sound Licence A and schedule of frequencies, classes of emission and
power limitations "as from January 1," 1982 ." power limitations "as from January 1 , 1982.
These are regarded as "unacceptable" by the These are regarded as unaceperat for urgent
R.S.G.B. which inmediately called for discussions with the Home Office. The new
schedule, as printed, not only introduces the schedule, as printed, not only introduces the
new international symbols and defines power in terms of output to the aerial in dBW, But also emoves 10 kHz from the British 1.8 MHz band estricts 3.5 SHzz transmission to the very low power of 9 dBW (carrier power), compared with
20 dBW for other h.f. bands, and allo introduces entirely new form of power restriction 30 dBW maximum equivalent isotropicall There are also many other apparent technica anomalies that are inexplicable in any rationa echnical terms.
A Home Office
A Home Office spokesman has told us that it mis-prints. It must be pointed upon a series of ublication in the London Gazette makes it legal announcement.

Computers in the field

The computer industry at the moment seems
obsessed with 'the man in the field', the roving
executive, salesman, engineer or even the jourexecutive, salesman, engineer or even the jour-
nalist. The theory is that these peripatetic repre sentatives can feed in the latest information deal, sales figures or stories down the line to
their parent companies Ona approach to this. is illustrated by the new
protable terminal by Disital Equipment protable terminal by Digital Equipment Corp. The Correspondant is a hard copy printer terminal about the shape and size of an electric type-
writer. It can handle plain paper and can have writer. It can handie plain paper and can have
tractor feed as an additional option. It offers 132 -column printing with a range of typefaces
and because it is bit-map addressable it offers and because it is bit-map addressable it offer
high resolution graphics (132×72 dots per high resolution graphics (132×72 dots pe
inch) and can be sused in coniunction with Digi-
tal's tal's visual display terminals. What makes it
portable is the universal' power input which portable is the 'universal' power input which
will accept any a.c. mains supply of or frequenceny. It may me fitted with any voltage acust
coupler to communicate with the bse coupler to communuicate with the base compu-
ter. Digital are eager to point out however that it ter. Do hia are eager to point oed printer terminal with an RS232 interface
The Digital Correspondant is a terminal and
must be connected, by whatever must be connected, by whatever means, to
computer to be of any use. An alternative ap proach is the portable computer. This has the
advantage of being able to collect data in the

DWW Electronics, has been dy 144 , made by tough case and a flat, touch-sensitive keyboard. It has a liquid crystal display of up to 128 char acters in four lines. It is battery powered an thus can include an internal memory which odoes
not lose its data and real-time calendar and clock not lose its data and real-time calendar and clock
so that entries can be 'tagged' with collection time automatically. The Husky 144 is provided with 144 K -bytes of memory and has
friendly' software. A key marked 'Help' may be pressed at any time during operation and a part of the interral 'manual' is displayed on the
screen giving information on wat to screen giving information on what to do next.
To communicate with the outside world To communicate with the outside world the
Husky 144 can use an RS232 interface for direct communication with a host computer or a printer. It can use an acoustic coupler for tetephone
contact. It can also be used as its own base contact. It can also be used as its own base
station and may be plugged into an optional disk
drive for sig station and may be plugged into an optional disk
drive for storage and retrieval of files. With
disk drive it can also be operated under disk drive it can also be operated under CP/M
which gives it access to a large library of comwhich iles
mercial programs.

Correspondant - Digita's plain paper portable
terminal designed tor executives on the move'
throughout Europe. The majority of the compu-
ters are likely to be sold to O.E.Ms. A version of ters are likely to be sold to O.E.Ms. A version of processor is being produced and this will also Eddie Bleasdale the managing director of Bleasdale Computer Systems believes that Xenix will be very yopular in scientific and educaional applications because of the widespread
use of Unix in DEC computers. As Bleasdale are use of Unix in DEC computers. As Bleasdale are hat his company will maintain that position and

CP/M and Unix have their official blessing to ers should be wary of 'looknalike' systems. Tradi-
new operating system which became 'machine-
dependent'. So if a computer system was selecdependent.' So if a computer system was selec-
ted the operation system went with it and the user became stuck with it. If, however, the
operating system were selected first then a operating system were selected first then
number of manufacturers could offer computers which operated the system. CP/M and Unix are suitable candidates but some systems are being
marketed as 'Unix-like', for example, but do not marketed as 'Unix-like', for example, but do not
have the universal application or constant development of the original. One has a feeling that the warning may not be entirely altruistic;
CP / M and Unix both operate on Zilog equip${ }_{\text {ment. }}^{\text {CP/M }}$ and Unix both operate on Zilog equip ment.

SIMPLE POWER AMPLIFIER

Complementary Hexfet devices offer improved performance over the equivalent bipolar output stage and allow simplified drive circuitry. This design delivers 60 watts bipolar output stage and allow simplified drive circuitry. This design delivers into a four-ohm load, 32 watts into an eight-ohm load, from a simple $\pm 30 \mathrm{~V}$ suply.

The split power supply rails of this design give good rejection of supply voltage cuit to be used and the load to be directly coupled. The output devices operate in the source follower mode, which offers a twofold advantage: the possibility of oscillation in the output stage is reduced as oitage gain is less than unity, and signal
feedback through the heatsink is eliminated as the drain terminal, which is electrically connected to the tab on the TO-220 package, is at a direct voltage. Symmetrical output is achieved by
providing a "boot-strapped" drive to the grote of the n -channel device from the output. The use of the bootstrap circuit, C_{4}, $\mathrm{R}_{8}, \mathrm{R}_{9}$, also allows the driver transistor to operate at near constant current, which
improves the linearity of the driver stage. improves the linearity of the driver stage.
The diode clamps the bootstrap circuit, restricting the positive voltage at the gate of Tr_{5} to $+V_{\mathrm{DD}}$ to maintain symmetry under overload conditions.
Transistor Tr_{3} and resistors $11,12 \& 13$ provide gate-source offset voltage for the
output device with \mathbf{R}_{12} variable to adjust quiescent current for variation in threshold voltage. A degree of temperature compensation is built into the circuit as both the emitter-base voltage of Tr_{3} and the combined threshold voltages of the f.e.ts have
a temperature coefficient of $-0.3 \% /$ deg C . The class A driver transistor operating at a nominal bias current of 5 mA set by R_{8}, \mathbf{R}_{9} is driven by the $\mathrm{p}-\mathrm{n}$-p differential input
pair biased at 2 mA by R_{3}. Components R_{7}, pair biased at 2 mA by R_{3}. Components R_{7},
C_{2} set the closed-loop gain of the amplifier C_{2} set the closed-loop gain of the amplifier
R_{6} / R_{7} and provide low-frequency gain boosting. Additional components $\mathrm{R}_{15}, \mathrm{C}_{7}$ connected between the output and ground suppress the high-frequency response of the output stage, allowing the h.f. per-
formance of the amplifier to be determined by the input circuit. Component $\mathbf{R}_{1}, \mathbf{R}_{2}$, C_{1} at the input of the amplifier define the input impedance and suppress noise. To achieve 60 watts into a four-ohm or 5.5A peak. To sustain this source current, the n-channel Hexfet, IRF533, requires a gate-source voltage of 5 V .
As peak load voltage is 22 V , gate bias voltage to achieve peak power in the posi-
tive sense is V. $+V_{s a}=27 \mathrm{~V}$. A similar tive sense is $V_{\mathrm{pk}}+V_{\mathrm{gs}}=27 \mathrm{~V}$. A similar
calculation for the negative peak, using the calculation for the negative peak, using the
p-channel device IRF9533, shows that a negative gate bias supply of -28 V is required. Consequently, a $\pm 30 \mathrm{~V}$ supply is adequate for a 60 watt output, provided hat the supply voltage does not fall below
$\pm 28 \mathrm{~V}$ when loaded: a source impedance

by Peter Wilson

 International Rectifier Coof one ohm or better. When the supply voltage impedance is high, use a higher voltage supply together with complemenIRF532/IRF9532.
When an eight-ohm load is used, 32 watts output power can be achieved from a $\pm 30 \mathrm{~V}$ supply with source impedance better than two ohms.
The curves drawn in Fig 1 show the put power and power dissipated in the f.e.ts as a function of r.m.s. output current with $\pm 30 \mathrm{~V}$ supplies and four and eightohm loads. It can be deduced that the maximum power dissipated in the devices ohm loads respectively. Limiting the case temperature to $90^{\circ} \mathrm{C}$ and making an allowance for the thermal impedance of insulating washers, heatsink requirements are $1.67^{\circ} \mathrm{C} / \mathrm{W}$ with eight ohm load. Smaller heatsinks may be tolerated if the amplifier is not operated continuously at rated output power.
put power.
Open-loop gain measured with gate and $30 \mathrm{~dB},-3 \mathrm{~dB}$ points occuring at 15 Hz and 60 kHz , Fig. 2. Closed-loop curves are shown for amplifier gains of $100\left(R_{7} 470 \Omega\right)$ and $20\left(\mathrm{R}_{7} 2.2 \mathrm{k}\right)$. In both cases the curve remain flat to within $\pm 1 \mathrm{~dB}$ between 15 Hz

and 100 kHz with an eight ohm load. The slew rate of the amplifier, measured with a 2 V pk-pk square wave input is $13 \mathrm{~V} / \mathrm{\mu s}$.
positive-going and $16 \mathrm{~V} / \mathrm{us}$ negative-going. The discrepancy could be balanced out by addition of a series gate resistor for Tr_{6}. Reduction of the closed-loop gain from 100 to 20 produces a significant improvement in distortion figure, Fig 3. Consid acceptable. The output stage quiescent current was adjusted to 100 mA and can influence the distortion measurement significantly if allowed to fall below 50 mA . The dependence of the quiescent cur-
rent in the output stage and of the output offset voltage on power supply voltage are illustrated in the Table. Current is set by first adjusting the potentiometer R12 for minimum offset voltage - turned fully used - and apply the power supply voltage, the positive supply passing through an ammeter with 1 A f.s.d. It is then adjusted until the meter reading is
100 mA with a $\pm 30 \mathrm{~V}$ supply. Remove the 100 mA with a $\pm 30 \mathrm{~V}$ supply. Remove the
meter from the circuit before applying an input signal to the amplifier.
When assembling the printed circuit board, mount the passive components first, ensuring the correct polarity of electrolytic capacitors. Then solder in bi-
polar transistors, checking for correct pin polar transistors, checking for correct pin
identification. Finally mount the f.e.ts, avoiding static discharge by shorting the pins together to ground and using a grounded soldering iron. Check the assem-
bled board for correct component place-

ar for toight ohm Fig. 1. Power curves of the amplif
loads and $\pm 30 \mathrm{~V}$ power supplies.

Fig. 2. Frequency/amplitude curves for

Check the copper side of the board ment. Check the copper side of the board nove them. Check for dry solder joint isually and electrically using a resistanc neter and rework if necessary
Now apply power to the amplifier with ipators fitted. Adjust potentio eter R12 for minimum offset (fully nticlockwise on the p.c.b. layout) connect an ammeter in series with the posicice upply and adjust R
ween 50 and 100 mA .
ircuit, protect it from is connected in .) Whe quiescent current set, conV. Exe output offset voltage is zero ± 100 . Estessive and erratic variation in circuit oscillation or faulty wiring. Oscillation can only be satisfactorily identified and suppressed using an oscilloscope. Also, supply decoupling capacitors should be mounted close to the amplifier output tage and load ground point.
Additional circuit components have tability of the complete amplifier. Placement and values depend to some extent on the printed-circuit board layout. Observe he following points when designing the printed circuit board.

- Adopt a common ground principle, i.e.
take power supply decoupling capacitors, ground in close proximity, eliminating the

Supply voltage (V).	Output offset (mV)	Quiescent current (mA)
35	-40	135
30	-200	100
25	+4	75
20	+30	54

fects of common-mode ground current. imilarly use a common output node, the ad, feedback resistor and h.f. suppresmon point on the board.

- Keep the length of connecting lead to he gate terminals of Hexfets to an absolute output stage. Series gate resistor R_{10} suppresses oscillation, but too high a value
limits slew rate. Series resistor R_{14} uppresses amplifer capacitive coupling to the base of Tr_{4}.
- Phase shift in the amplifier when drivng a reactive load can lead to high-frehe addition of a small air-cored choke $3 \mu \mathrm{H}$ with an $8 \Omega, 2 \mu \mathrm{~F}$ load - restores tability. The final value of the choke is defined by experiment.
With the current set, remove the ammeer from the positive supply and apply a gnal to the ampififier input. 150 equired for full rated output is
60 mV for a gain of 100 , and 770 to 800 mV for a gain of 20 . Clipping of the utput waveform when operating at rated power indicates poor supply regulation and is remedied by reducing the input
signal amplitude and derating the amplifier. Alternatively use a lower-impedance supply. Amplitude response of the amplisupply. Amplitued response of the ampli-
fier can be checked over the frequency

Fig. 3. Distortion curves for gains of 100
and 20 with loads of four and eight ohms.

Decoupling capacitors reduce the supply fequency ripple to $5.5 \mathrm{~V} p k$-pk at full load. significantly above $\pm 35 \mathrm{~V}$.
range $15 \mathrm{~Hz}-100 \mathrm{kHz}$ with the aid of an audio test set or signal, generator and waveform at high frequency indicates a reactive load: adjust the output choke to réstore the waveform. Tailor h.f. frequency response with a compensation caponse is controlled by $\mathrm{R}_{7}, \mathrm{C}$

Supply-frequency breakthrough is most discernible in a high-gain circuit. Minimize pick-up at the high-impedance nput by a screened cable, grounded at the jected through the supply to the input stage of the amplifier can be detected across capacitor C_{3}. This is normally atte-

R.f. radiation

hazards

ast year we published a news item ${ }^{1}$ briefly pointing out the controversy surrounding the
r.f. radiation-exposure safery limits accepted by most western countries. In America, the ANSI
and ACGIH (American Conference of mental Industrial Hygenists) have both suggested new frequency-dependent standards based on the same work and both assuming rate, and it is expected that the Americans will revise their existing $10 \mathrm{~mW} / \mathrm{cm}^{2}$ maximum safe level in the near future. Although we in the UK originally based our maximum safe level $\left(10 \mathrm{~m} W / \mathrm{cm}^{2}\right)$ on that de-
cided in the US some 20 years ago, whether or not we will again follow suit is not clear.
According to Mr S Allen of According to Mr S. Allen of the NRPB, one
possible point of contention is that the two propossible point of contention is that the two pro-
posed standards mentioned above are based on results from far-field radiation tests. It is ABSORPTION IN MUSCLE

A glass-fibre printed circuit board for the heating-fuel saver will be available for
E4.50 inclusive of VAT and UK postage from M. R. Sagin VAT and UK postage Level, Constantine, Falmouth, Cornwall. nuated by the common-mode rejection of this is the source of breakthrough, adjust
accepted that measurements in the near field, and hence assessment of potential health
hazards, are more complex than in the far field. Taking into account near-field effects when determining maximum safe-level standards would s be sensible.
An article recently published in Radio Com-
nunication ${ }^{\text {2 }}$ gives a good account of r.f. radiaion hazard, as far as the radio amateur is conthermal" effects of r.f. radiation, mostly emanating from Eastern Europe, should be "rearded with suspicion", and go on to say, "there
no evidence that r.f. radiation prodyces longThe first of these graphs provided by Mr Harlen of the NRPB shows r.f. radiation equency for a plane slab. Combin effects of pen etration and 'focusssing' (or
geometry and high refractive index) in a eometry and high refractive index) in a graphs taken from the Journal of Microwave Power.
the values of C_{3}, R_{5} to suppress the signal
If the output stage is destroyed either through short-circuit load or h.f. oscillation, replace both Hexfet devices; it is unlikely other circuit components will have been affected. Repeat set-up procedure erm damage of the kind associated with ionizing radiation, i.e., cancer or genetic damage."
Not a hint is given that the authors feel the accepted maximum level might be too high. But not everyone is happy with the situation.
Mr Herbert Goldwag, for one, summarize the opposing point of vier opposing point of view in an article called
Microwave hazards' published in the IEEE References
Small wavelengths - large doubts, Wireless World
October 1981, 442 . 2 R.f. hazards and the radio amateur, Blackwell, R. P. and White, I. F., Radio Communnication, February
1982, pli36. ${ }_{\text {3 }}$ Microwave hazards, IEEE Spectrum, May 1979, ${ }_{\text {Further reading }}^{\text {p66 }}$
 landbook for Radio Engineering Managers by J. F. adio hazards in the pe p372-387. King, S. R. R., Non-Iomixing Radiation, vol. 1, No. 4,
ppl78-18. King, S. R.
ppl78-189.

LETTIERS

SITUATION NORMAL In your February issua, Pat Hawker mentions
"SNAFU" as a coinage of War II. I think he and your readers may be interested to know its pre-war origin.
Dr-waring the said war it was my pleasure to
work for a time with two clever and humorous work for a time winh two clever and humorous neers, and they told me that their pre-war iobs heers, and been to go to telephone exchanges where
there was trouble and rectify it U Uoon arrival at there was trouble and rectify it. Upon arrival at
the site an engineer would make a brief estimate of how serious was the trouble, establish a tele-
phone link to his headquatrers and send back a phone link to his headquarters and send back a
code word. His home base would therefore code word.
know he had arrived where the problems were, have a rough idea of how long it would take to clear them and have a telephone number where
he could be contacted if need be. There were he could be contacted if need be. There were
three code words: SNAFU - Situation normal, all fouled up" (or words to that effect); TARFU - "Things are really fouled up"; and FUBAR would be sent if, for instance, a telephone exchange had been seriously damaged by fire or flood, while SNAFU would be used for a situation where cables or machinery had been
damaged but where repairs or replacement would be relatively straightforward.
SNAFU became widely used in many situa-
tions during the war, but strangely the other tions during the war, but strangely the other
code words were rarely used or were unknown. code words were rarely used or were unknown.
It would be a pity if this bit of folk lore was lost. C. H. Banthorpe Middlesex

WOODPECKER

As a radio amateur, I have often been annoyed by the Russian "woodpecker" pulse transmissions which have plagued the h.f. bands for many years ${ }^{1}$. There has been no official explana-
tion of the purpose of these transmissions, and various theories have been expounded in the media, ranging from spy communications to coming across some of these signals on a laboratory spectrum analyser, and storing the waveforms on a transient recorder, I think I can shed a bese.
Fure 1 is based on a printout of a typical pulse, ploted as logarithmic amplitude versus time. The overall duration of the pulse is 3.1 ms .
The interesting feature is the presence of The interesting feature is the presence of
"glitches" in the top of the pulse, the pattern of which remains the same from pulse to pulse,
and they occur at intervals which are multiples and they occur at intervals which are multiples
of 100 us. This led me to suppose that the glitches formed a binary sequence of length 31 glitches
bits.
I also
I also guessed that the glitches arose from phase reversals in the transmitted signal, the
finite width of the glitches resulting from the effect of the finite bandwidthe resulting from the and/or spectrum analyser. Thus, arbitrarily as andor spectrum onalyser. data bit, the original modulation pattern could be reconstructed with 0 representing 0 degrees and 1 representing 180 degres. This gave the
0000011100100010101111011010011 . This sequence turns out to be a maximum-
length, pseudo-random binary sequence ${ }^{2}$, length, pseudo-random binary sequence ${ }^{2}$
which can be generated by a 5 -bit shift register which can be generated by a 5 -bit shitt register
with feedback formed from the parity function of the contents of stages 3 and 5 . I subsequently WIRELESS WORLD APRIL 1982

observed other pulse transmissions with different sequences of the same length, and was
able to match these to p.r.b. codes from shift registers with feedback from stages $2,52,3,4,5$ and $1,2,3,5$. Four different codes, implying four
different transmitters, agreeing with observations previously reported ${ }^{\text {. }}$.
The interesting point about this use of p.r.b.
codes arises from the shape of their autcocorrela codes function. If such a sequence is compared bit-for-bit, with a shifted version of itself, at all possible shifts, then, apart from the position
where all 31 bits match, at all other shifts no more than 1 bit matches between the two sequences. Thus, if a woodpecker pulse is fed through a 3.1 ms delay line with 31 equally
spaced taps, and the outputs of the taps are spaced taps, and the outputs of the taps are
vectorially combined with appropriate inversions, so that the inversion pattern itself is the same sequence as the transmitted phase-inver-
sion sequence, then the combined output will be sion sequence, then the combined output will be
a single pulse of $100 \mu \mathrm{~s}$ duration, 31 times the amplitude of the input signal, with virtually no sidelobes.
The co
The conclusion from all this, it seems to me,
is that the wool compression radar system must be simply a pulse 100 us (10 miles), but the sensitivity 31 times that of a 100 us radar of the same power. Not
only does the p.r.b. sequence cancel out shifted versions of itself in order to achieve its perform-
ance, but it has a high immunity to other codes ance, but it has a high immunity to other codes ence between separately sited radars on the same frequency. The use of four different sites presumably enables the target to be pinpointed in three dimensions in spite of the poor directiv-
ity of h.f. antennas and the variabilities of the ionosphere which is used to extend the range beyond the horizon.
Although this information leads to the pos-
sibility of jamming these signals, or at leas sibizly of thamming these signals, or at least
puzzing the distant radar operator, whether we
shall ever be rid of these wretched signals is another matter altogether
Gosport
References

1. Mystery Soviet over-the-horizon tests. Wire less World, February 1977 p .53 .
2. Pseudo-random binary sequence generators.
Butler, Wireless World February $1975 p$ p. 87

POOR DEAL FOR

AMATEUR RADIO
I wish to congratulate you for publishing a letter (February 1980) criticising the RSGB: at last som many RSGB members. I myself have written
of of many RSGB members. I myself have written
to the RSGB on several occasions but I have never been privileged with an acknowledge-
ment, not to mention an explanation of their
actions.
Whilst the RSGB has been trying desperately to prevent the introduction of c.b. (I, like many see through their claims of neutrality), radio
amateurs have ended up with a very raw deal Firstly, we have lost 200 kHz of 70 MHz secondly, only one of the h.f. bands has been
introduced; thirdly, despite the introduction o c.b. on 27 MHz (with no Morse, B B licencees
sill need Morse for 70 MHz to 28 MHz . Whilst s.b. on need Morse for 70 MHz to 28 MHz . Whilst pip/kay tones are not to everyone's taste, they
are used freely on c.b. but are severely restricted are used freely on c.b. but are severely restricte
on the amateur bands. Selcal type signals are not permitted on the amateur rands whilst they are
on c.b. I must add at this point that 1 am totally on c.b. I must add at this point that I am totally
pro-c.b. and I am not some jealous, sour-grapes pro-c.b. and I am not some jealous, sour-grap
radio amateur. Furthermore, whilst expending its energy on anti-..b. propaganda, the RSGB have totally ignored the decline of amatur radio. Littu
mention is even made in Rad-Com of the illegal mention is even made in Rad-Com of the illegal
operation on London repeaters. Why does the

LETTERS

RSGB not close them down or, better still,
persuade the Home Office to catch the offenders. The RAE is now a ioke. Amateur radio is meant as a technical hobby; the new RAE has
virtually eliminated any serious technical revirtualy eliminated any serious technical re-
quirements. How many radio amateurs repair, let alone build, their own equipment?
As radio amateurs, we have virtually sold our
birth right and the RSGB has stood by and let it
B. Reay

Woolwich

WALK-ABOUT

TELEPHONES
The Post Office and its successor British
Telecom have in the past been accused of being Tlow to meer the demand for telephonone instru-
ments other than those of the standard ments other than those of the standard type, but the availability of types ranging from the elegant baroque to the frivolous Mickey Mouse.
One facility which does not appear in the li One facility which does not appear in the lists
is the hand-held device which allows the user to make and receive calls while at the same to to ree to roam about his house and garden. Radio linkage is one way of making this possible and is
the means employed in certain instruments which are obtainable by the general public from suppliers other than Telecom.
This may be because of the This may be because of the possibility of the one who is not a member of the subscriber's ousehold.
It is unlikely that the prospective user of one
of these devices will have been warned that his uture conversations may be overheard and even the point is made he may shrug off the matter ant factor is that even if the user is indifferent to being overheard this may not apply to those
with whom he is in communication and who mancation and who being broadcast.
rivacy is pretty small since suirably to one's privacy is pretty small since suitably equipped mediate neighbourhood. However, a single eavesdropper of less than good intent could be at least an embarrassing nuisance or there could stranger might seek to profit as a result of inFormation received.
Finally, there may very well be a real need for chis type of telephone facility but there are pit-
falls in the use of unauthorized equipment. One assumes that a Telecom-approved system awaits he provision of suitable safeguards and deetwork. G. Dann
G. Dann
Chipstead
urrey

NANOCOMP E.P.R.O.M. PROGRAMMER
1 have been experimenting recently with a
photographic flash tube and am concerned out inductive flashes and their erosion of the
button in Fig. 1. on page 30 of the January 1982 Wireless World
I think that problem could be reduced by
having a low-volage, high-current winding on having a low-voltage, high-current winding on
the choke core in addition to the 4 H . This vould make the choke a transformer as well. A 60

When the On button is pressed, C discharges via the low-voltage winding, inducing an induc-
tive voltage of, say, 2 kV in series with the mains tive voltage of, say, 2 kV in series with the mains
across the open-circuit tube. But as soon as the across the open-circuit tube. But as soon as the
2 kV causes the tube to strike, it is anticipated that mains current will flow through the tube, using the 4 H winding now as the choke. When
the Off button is pressed, the tube should the Off button is pressed, the tube should g o
off. In the event of a thyristor short-circuit or capacitor short-circuit the $10 \mathrm{k} \Omega$ resistor would get warm and only consume a few watts. Normally, when off, only capacitor leakage current
should be taken. The operation would depend on a real difference between striking voltage and maintaining voltage in the tube

J. R. D. Harlow Essex

DATA STORAGE

I woblard like to comment on two articles in the February 1982 issue: "Data recording on audio system". To start with I would dike topmen duce myself as the designer of SOFTY, which PRpars in the latter article, and the inventor of
TRASIFT, a sot SOFTY to store data on cassente tape used in sorTY to store data on cassette tape. The point
that I will try to illustrate is that there are more ways of killing a cat than choking it with cream. Data storage using audio tape is like a serial
transmission in a medium of limited banwidthe transmission in a medium of limited bandwidth
forget that the data stays in the medium for an (forget that the data stays in the medium for an
indefinite time). The low-frequency limitations
are the bigger are the bigger nuisance - so why not use a
system which has no low-frequency composystem which has no low-frequency compo-
nents? If the data recording is for a microsystem why not do it with software? If you a mere willingstem to hnore convention you can use a simplified ecording and playback circuit.
Most microsystems have a bit of $i / /$ going
spare, either on the microprocessor itself or via an 8255 or similar. You could use a separate port for input and for output. You could add
some sort of signal conditioning - but it isn't some sort of signal conditioning - but it isn't
necessary. This circuit will store data using the
cheapest cassette recorder cheapest cassette recorder at well over 3000
baud-equivalent baud-equivalent.
Transmit a zero by putting the port high for a
jiffy, then low for the same jiffy. A 1 is reansmitted by using bigger jiffies. All binary
transmissions are 0 s and ll strung together and transmissions are 0 and 1 sstrung together and
the low-frequency components have vanished. You can put this transmission through a capacilor, for instance, without degrading it. You can Recovering the succession of 0 s and is is a matter of measuring the intervals between zero
crossings. The resistors suspend the port at transition point. You might recover the data
one of two ways: either you take a positi one of two ways: either you take a positive
transition as a starting point, delay for a step
interval and interval and then input the bit, or you measure whether it represents 1 or 0 .
Examination of this transmission shows two
important properties: turning it upside down important properties: turning it upside dow
makes no difference to reception, and clock speed errors don't accumulate - each bit con-
tains a clock. 10% or more difference in speed tains a clock. 10% or more difference in speed
wont
A taffle it. An't baffle it.
transwirt transmission doesn't use
start, stop or parity bits. The speed of the trans start, stop or parity bits. The speed of the trans
mission is more likely to be restricted by the
processor's agity in processor's agility in handling the data than b
the bandwidth of the recording system. II is up to the processor to make an intelligent decision about whethersor it has a valid transmission or not
and where that transmission starts. If the inpur and where that transmission starts. If the inpu
is to an interrupt this process can be automatic. SOFTY2 uses $500 \mu \mathrm{~s}$ and 1000 us as the trans mission times for a 0 and a 1. To show that transmission is coming, and to get over the
bounce period of the recorder's automatic gain control, a leader of 20 bytes of 'AAA' 'AA bytes are sent. (AA in hex. is 10101010). Then a hex 69
(which is 01101001), and the data, with (which is 011010
Recovery uses a routine which samples for Ward from each positive transition by byples for- 75 and
shifts the sample bit into a register. the register is then compared with ' 55 ' and ' AA ' the register is then compared with ' 55 ' and 'AA'
and either are accepted as valid leaders. A leader
counter with a sen counter with a starting value oo perrhaps 40 is
decremented for each valid leader byte, bur decremented for each valid leader byte, but
restored to starting value if an invalid leader is received. When the counter reaches zeare the
program starts looking for the ' 69^{\prime}. The ${ }^{6} 699^{\prime}$ is program starts looking for the ' 699^{\prime}. The ' $69{ }^{\prime}$ ' is
there for alignment - so that you can chop 'the there for alignment - so that you can chop the
succession of bits into bytes in the right places. succession of tits into bytes in the right places.
To establish the best form of error checking it is necessary to anticipate how the recorder will
mess up the data. The usual system of adding mess up the data. The usual system of adding a
parity bit to each word fails because lateral parity bit to each word fails because lateral
displacement
systems common. All error checking systems use redundancy - they transmit extra
information to catch errors. SOFTY uses single byte appended to the transmission which is formed by exclusive-ORing all the data bytes
with AA. (I used AA becuse with AA. (I used AA because it happens to be
the leader and in the right register at the right he leader and in the right register at the right
ime). The reception routine exORs the transmission and shows you the result - if it isn't AA then you have errors. I call this parallel
parity. parity.
In case you're wondering how much pro-
rramming space this takes: A $Z 80$ device rramming space this takes: A 280 device
(MENTA), designed later, uses 147 bytes for
the cassette interface. SOFTY uses about 300 , The article "Economical Z80 devel 300 . system" supports my claim that the combinaion of any assembler and a SOFTY makes a powerful design tool. However the process of
linking a Nascom to SOFTY described is un-

WIRELESS WORLD APRIL 1982
necessary. Leaving aside the fact that SOFTY2 necessary. Leaving aside the fact that SOFTY2
already has a parallel interface with normal
handshake, plus serial routines for 110,300 600,1200 and 2400 bauds, all of which ignore by far the simplest solution is to write TRANSWIFT routine for the assembler' processor to dump the code into SOFTY using
the cassette iack-socket. This reduces the the cassette jack-socket. This reduces th
hardware to a piece of wire and a a ack-plug. I fact, I use a similar system from my Shar MZ80K. The port used is the Sharp's keyboar
1.e.d. - mainly because the connetor is pro 1.e.d. - mainly because the connector is pro-
vided on the p.c.b. TRANSWIFT is the simplest and most economical method of implementing a serial data transmission system, and is especialy.
B. Savage
Dataman Designs
D. Sataman Desig
Dorchester

THE DEATH OF

ELECTRIC CURRENT

Ivor Catt's latest letter suggests that some
progress has been achieved in an uphill struggle for he seems to acknowledge that we are discus sing models of reality and not reality itsel
However, there is some way still to go, for seems to regard models as "true" or otherwise. Models can be bad or good or better in relatio to their accord with observation, but never true
or false. So it is fatuous to assert that a mode shows that electric current does not exist. Certainly, there is much to be said for keepspondents have shown that the "insurmountaspondents haves shown that in Mr Catt's mind. Further, simple models ar not always best: albeno measurements
shown the shortcomings of the green-chees model of the moon, long before Armstrong arrived to test the flavour!
I was interested by Mr Davidson's achieve-
ments with discharging capacitors, but I suspect that those of us not fortunate enough to have capability for time-domain reflectometry wil continue to use the exponential model. This
model does have a shortcoming in that it sug gests that the discharge current continues for an infinite time, whereas observation shows that model we can account for this by supposing that the discharge current becomes submerged in the noise, currents generated by random motion of sumably there is a means of describing the effect using an e.m.
R. T. Lamb
College of Engineering Studies
DANGERS OF LOW-
FREQUENCY SOUND burgh, who replies to my earilier letter conceriing my invention and operation of a hi-f four Hz , suggesting that I should be careful., He quotes from the paperback "Supernature" b Dr Lyall Watson and suggests that my speaker
could be harmful to certain people, due to its infrasound output.
I know that infrasound of very high intensity I know that infrasound of very high intensity
can give temporary effects which might be can give temporary el
termed uncomfortable or disquieting by some
people. However, the subject of infrasound in
WIRELESS WORLD APRIL 1982
general is now much better understood that
was in 1974 (the date quoted by Mr Frost whic applies to the above publication) and it is now known that even prolonged exposures to infra-
sound of even very high intensities up to sound of even very high intensities up to that
experienced, say, in a rapidly moving railway carriage with the window open (which I believe in the order of $1355-138 \mathrm{~dB}$?) do no not cause elasting
deleterious effects. My peakers deleterious effects. My speakers at present have 20 dB less than this, or around the level of v.l.f. caused in a house by a very strong wind
blowing outside. There is $n o$ risk of permanent blowing outsidid. There is no risk of permanent
harm arising from their use as hi-fi speakers. harm arising from their use as hi-if speakers.
Infrasound produced by helicopter blades pneumatic drills, heavy trucks, etct. (from the
driver's seat) can be louder that this and are still driver's seat) can be louder that this and are still
not harmful. It takes sound loud enough to not harmful. It takes sound loud enough to
physically shake oone out of one's seat befor even temporary damage is caused (note sound
pressures, not structure-borne vibrations). Levels such as those of a full sized fog horn (marine, shore-based) at 3 ft are at the danger area.
G. Holliman
Wital G. Holima
Waftord
Herts

MICROCHIPS AND

MEGADEATHS

Further to Mr P. C. Smethurst's letter in the way intr issue, may I suggest that the only way in which the technical society will become
reality is by a major evolutionary development of the human species.
The nearest approach the average homo-erec tus makes to the technical society is to buy digital wrist watch with alarm and graphi tell the time with it. Such mistakes are inevitable with our present learning process. Until our DNA reorganizes itself a little so course) can be passed directly to offspring, ou ability will depend on Mr Smethurst's learning 'unusual' standard and buy watches with hands.

Watnall Notts

Tim Bierman (October Letters) and Roy C. hitehead (January Letters) are wrong to heir occurrence. Modern technological war fare, involving nuclear and space-based ef woilling and not depentible warrie recruitme minority elite now possesses the power to de troy the earth and, if competition over markets rade routes and natural resources necessitates god of profit. If the threat of war is to be re moved, political action must be taken to transfer power away from the possessing minority int community. If the weapons are used, there wil be no hiding places for conscientious objectors time for objecting is now Instead of listing names of Wireless World
readers who would refuse to fight in the event o a future war, may I suggest that a better cours
would be to list the names of readers who hav ken the step of extending their scientific in taken the step of extending their scientific in-
terest in technology into a scientific analysis of society?
Steve Coleman
Clapham
London SW4

THE NEW

ELECTRONICS

The article by Hugh Jaques in your Januar edition prompts me to add my own commen on the subject of "The new electronics".
It is all very well to decry falling standards, It is all very well to decry falling standards,
but I find the tone of that article rather counter but I find the tone of that article rather counter
productive. The standard in Germany, if w wish to draw comparisons, is far lower-yet the number of "Diplomingenieure" (dipl -
Ing) and Doctors of Science is far greater
Previous Wireless World editorials have covered Previous Wirecess World editorials have covered the question of status - and one gets the clea
impression that British engineers are developin impression that British engineers are developing
an inferiority complex with regard to the Ger mans.
Yet, Yet, years ago, \mathbf{I} attended a conference in
Yes
rankfurt when Cosmos and 1 cd . were intro duced. The meeting began with German eng neers pounding the table Kruschev-style everyone was quite unruly. When I pointed out
that I.c.ds, with a quoted life-expectancy of fifty that 1.c.ds, with a quoted life-expectancy of fift thousand hours, could not complete for longev
ity with l.e.ds (up to one million hours),
. everyone was on his feet screaming ".c. .ds no
good." The meeting broke up in chas and I
never did find out if one could prolong the life good." The meeting broke up in chaos and life
never did find out if one could prolong the life
ofl.c.ds by interposing ceramic capacitors in the of 1.c.ds by interposing ceramin capacitors in the
leads to block the d.c. components of the signal, leads to block the d.c. compone lig of crystals.
which causes electrolysis of the liquid Dipl-Ing colleagues were forever asking me
such questions as "What is the difference besuch questions as "What is the difference
tween a p p-n-p and an n -p-n transistor", and tween a p-n-p and an n-p-n transistor , action
doctor of physics never answerd any question
without his sschlaue Buch" (clever book) which doctor of physics ne suan" (clever book) whic
without his "chlaue Buch
was his real brains. was his real brains.
No - the Germans are dishing out high-level
qualifications in every branch of science almos qualifications in every branch of science almo television programme "Bilder aus der Wiissens chaft" (pictures from science) complained that
Germany was not winning any Nobel Prizes. Germany was not winning any Nobel Prizes.
To improve standards one must set a example through excellent work - rather than. trying to catch people out. Indeed, there
nothing very wrong in a newly-qualified engineer being a little "green". The real education is neer being a itrute and if the British withhold the qualifications whilst the Germans mass-produce
them, Britain will not be well represented a them, Britain will not be well represented at
future international congresses, will lose pres ence in the world and cease to sell goods. It would appear that Mr Jaques was not so
"word-perfect" as he claims. In his Fig. 2, the ain is only - R_{2} / R_{1} if the source - impedanc point X is zero, which is what one would infe from the "gain between X and Z ", because any
generator impedance would be added to R econdy, the input-impedance at Y $R_{2} /(1+A)$) only if the source - impedance at X is infinite. Otherwise R_{1} and the source im
pedance form a series-string in parallel with $R_{2}(1+A)$. What source impedance does M Perhaps you can see how destructive such Perrhaps you can see how destructive such
style of cross-examination can be. We all make mistakes which are not mistakes at all unless we want them to be. "What is the input impedanc etter question, which would have saved M Jaques face. But I am just picking him up or In the final analysis, engineers are paid for In the inal analysis, engineers are paid for engineering - not or passing tests. . 1 wiven thi ever selective and all will fail.
C. Wehner
London, W2

RECEIVERS FOR OPTICAL FIBRE COMMUNICATION

During the next few years optical fibre systems will be used increasingly for long-distance telecommunications with emphasis on achieving greater bandwidth and greater spans between repeaters. In this rapidly developing subject it is essential to be aware not only of the latest published results but also of the underlying principles to fully appreciate the reported performance in detectors and receivers and the areas where there is still room for improvement.

Optical fibre communication systems are beginning to be used extensively for data
links and for long-haul systems. The first "generation" of systems operates in the near infrared - a wavelength of about near infrared - a wavelength of about
$0.85 \mu \mathrm{~m}$ made from gallium arsenide and detectors from silicon. At slightly longer
wavelengths, 1.3 to 1.6 um, glass fibre is wavelengths, 1.3 to $1.6 \mu \mathrm{~m}$, glass fibre is a
better transmission medium, having enormous bandwidth and extremely low attenuation $-0.5 \mathrm{~dB} / \mathrm{km}$ or even lower. Fibre systems are being used to carry telephone traffic at $140 \mathrm{Mbit} / \mathrm{s}$. over
unrepeatered spans of 10 to 12 km in the unrepeatered spans of 10 to 12 km in the possible to operate at ten times that rate over at least five times that distance. As the market for fibre grows and the cost comes down, it will become economic to use fibre
systems at lower data-rates as well, and systems at lower data-rates as well, and
also to transmit video either for entertainment or for teleconferencing. The three basic functions of an optical receiver are to convert the signal from an optical to an electrical form, to amplify the
signal, and to regenerate the transmitted message. The first of these is performed by an optical detector. Amplification is not pecific to optical systems except for the secial design of the front-end of the eceiver, which is inseparable from the Estimation and regeneration of the message involves dealing with the noise and various system impairments; only the

Fig. 1. Silicon p-i-- photodiode is suitable
for wavelengths from or wavelength from 0.8 to $1 \mu \mathrm{~m}$ (top),
while InGaAs/InP p-i-n diode covers wavelengths from 1 to $1.6 \mu \mathrm{~m}$ (bottom).

by I. Garrett

more basic ideas are covered; for more depth refer to the bibliography. In thes functions, an optical receiver seems similar to a radio receiver. However, curren
optical receivers are quite different in the way in which they perform. Heterodyne detection, universal in radio practice because of its excellent sensitivity and rejection of adjacent channels, is at presen a local oscillator which matches the arriving signal in frequency, phase, and polarization. Today's semiconducto lasers have spectral line-widths of 25 MHz to 1000 GHz , and current fibres do not
preserve a predictable polarization at the output end. Although the possible advantages of increased sensitivity and use of frequency and phase-shift keying have stimulated research into overcoming these and other problems, today's systems use
incoherent (direct) detection, in which only the variations in optical power are sensed.
Unity-gain detectors
The device which converts the optical signal to an electrical form must be
efficient at the operating wavelensth mutst respond at a speed appropriate to the message data rate or frequency band. One may also require a linear response, operation at ambient temperature from a convenient voltage supply, and a
preference for a small, light, cheap and reliable device. Semiconductor photodiodes fit all these requirements remarkably well, and there is little interest in other types of detector for optical telecommunication, at least in normal
terrestial environments. Photoconductive detectors have inferior noise performance except when the incident optical power level is high; pyro-electric detectors can only be made fast at the expense of sensitivity, and photomultipliers offer no
advantage in sensitivity when, as is normally the case in fibre optic systems, the optical power level on zero bits is not zero. Phototransistors are convenient devices for low-speed data links, but are
Ian Garrett, MA, Ph. D, MIEE, is with British
Telecommunications Research Telecommunications Research
Martlesham Heath, Ipswich.
generally not sufficiently fast and sensitive for telecommunication.
A photodiode is a reverse-biased p-n junction formed in a semiconductor
material. Photons are absorbed in the semiconductor and create electron-hole pairs. These carriers can be separated by an electric field, such as exists in the depletion region of a $p-n$ junction, and
then give rise to a current in the external then give rise to a current in the external
circuit. To convert light efficiently, the semiconductor material must have a high absorption coefficient at the wavelength of the light so that different materials are appropriate for different wavelength
The speed of response is governed by the time taken for the photogenerated electrons and holes to reach the terminals of the device, and by the RC time constant
of the measuring circuit, which may be of the measuring circuit, which may be
affected or even dominated by the junction capacitance. Photo-generated carriers travel across the device to the terminals from the points at which they are generated by diffusion and by drift in any
internal field. The rate of diffusion is internal field. The rate of diffusion is generally so slow tartexcept in very thin recombination and do not contribute to the photocurrent. The device is made fast and efficient by ensuring that the incident
photons are absorbed in the high-field depletion region of the junction.
Figure 1 illustrates a photodiode structure used in practice. It is a silicon device designed for the wavelength range
0.8 to 0.9 um, and has a thick depletion 0.8 to $0.9 \mu \mathrm{~m}$, and has a thick depletion
region 30 to 100 um thick formed in lowdoped material. The absorption coefficient of silicon in this wavelength range is 950 to $350 \mathrm{~cm}^{-1}$, so that several tens of microns of material are needed for almost complete absorption. Very little of the incident
radiation is absorbed in the undepleted n^{+}layer at the surface, which is only about $1 \mu \mathrm{~m}$ thick. The device is designed so that the field required to deplete it fully is well below the breakdown field strength, but to their scattering-limited yelocity (around $10^{7} \mathrm{~cm} \mathrm{~s}^{-1}$ in many semi-conductors at room temperature) resulting in a response time of about 10 ps per micron of depletion region. Depletion region doping is very low so that fast response is obtained with a known as a p-i-n photodiode, the i-region

WIRELESS WORLD APRIL 1982

Fig. 2. Silicon p--i-n diode chip, top, is 1 mm bonding pad beside it. Chip capacitance is below 0.1 pF, and reverse bias leakage current is around 50 pa at- 10 V bias.
Quantum efficiency at $0.85 u \mathrm{~m}$ wavelength corresponding to gallium arsenide injection lasers, is 0.95. Active area of InGaAs/InP photodiode isolated by mesa
etching is $100 \mu \mathrm{~m}$ in diameter in scanned elcectron micrograph (bottom). A small bonding pad is formed on the top surface
as the device was intended for front as the device was intended for front
illumination. Capacitance is 0.3 pF and
reverse bias leakage current below 10 nA at -10 V bias. Quantum efficiency is only abou
0.4 because many carriers recombine in the undepleted surface layer but this can be overcome by illuminating through the substrate; anti-reflective coatings also
being nearly intrinsic. The wide depletion layer reduces the junction capacitance too The device illustrated is $100 \mu \mathrm{~m}$ i diameter and has a capacitance of less than 0.1 pF

At wavelengths beyond $1 \mu \mathrm{~m}$, silicon becomes increasingly transparent and a different material is required for systems. An obvious choice is germanium which has a bandgap of 0.66 eV and so should be sensitive out to $1.8 \mu \mathrm{~m}$ or so well beyond the optimum transmission
wavelengths of 1.3 and $1.55 \mu \mathrm{~m}$. The smal wandgap of germanium is something of disadvantage: coupled with the high density of states in the conduction band it
means that the reverse bias dark current is large, which degrades the performance of an optical receiver. The other possible materials are the so-called group III-V compounds, binary compounds of
elements from groups IIb and Vb such as gallium arsenide and indium phosphide. To detect light at $1.55 \mu \mathrm{~m}$, a material with a bandgap near 0.8 eV is needed. None of the binary III-V compounds has such a bandgap, but many of the III-V
compounds form extensive solid solutions with each other, and the mixed
compounds have properties intermediate
between those of the binaries So it asween those of the binaries. So it look materials. In practice the choice is limited by the techniques available for preparing these materials in sufficiently pure and perfect form. The most usual materials for detectors in this range are the ternary
compound $($ Ga,In $)$ As and the quaternary (Ga,In)(As,P). In either material, the bandgap can be adjusted over a wide rang by selecting a suitable composition Reverse-bias dark current is smaller than in germanium by one or two orders of smaller density of states in the conduction bànd. Recently, the II-VI compounds such as $(\mathrm{Cd}, \mathrm{Hg}) \mathrm{Te}$ have also been studied for use as fas
systems.
The second device illustrated has an absorbing layer of InGaA's deposited on an InP substrate, with the p -n junction formed by diffusing a dopant such as zinc into the absorbing layer. This device is designed for the wavelength range 1 to 1.6
$\mu \mathrm{~m}$, in which the InGaAs layer has a high absorption coefficient, around $10^{4} \mathrm{~cm}^{-1}$, so only a thin absorbing layer is needed about 3 to $10 \mu \mathrm{~m}$. This makes the response fast, but an important fraction of the undepleted p^{+}region at the surface even if it is only $1 \mu \mathrm{~m}$ thick. Many of the carrie pairs formed in this region are lost by surfacerecombination or by recombination within this layer, so that the easy to control the thickness of this layer much below $1 \mu \mathrm{~m}$, but the problem can b surmounted by arranging for the light to be incident through the back of the device transparent at wavelengths beyond 0.95
$\mu \mathrm{m}$. Th quantum efficiency of a photodiode is the number of carrier pairs formed on average for each incident photon. It is less
than unity in practical devices for three than unity in practical devices for three reflected; some carrier pairs are formed in undepleted material and so do not contribute to the photocurrent at high frequencies; and some carrier pairs
recombine before reaching the terminals of the device. To improve the quantum efficiency, the surface of the device is often

Fig. 3. Depletion voltage and junction
capacitance as functions of the depletion capacitance as functions of the depletio
lyevt hickness for a 100 um diameter diode, taking the relative dielectric
constant to be 10, typical of many semiconductors.

${ }_{\text {FIELD }}^{30}$ STRENGTH (V / mm) Fig. 4. Avalanche gain as a function of field Parameter k is the ratio of ionization rates for electrons and holes. given an anti-reflecting dielectric coating
like the bloming of a camera lens; the surface reflection coeficient mas zero If the light has to pass through undepleted material, as in the lower diagram, this is kept as thin as possible or made of semiconductor which is transparent at the wavelength of interest. Recombination of carriers within the depletion region is
generally minimized by reducing deep evel impurities and crystal defects as far as possible.
The depletion layer thickness d is determined by the applied voltage V and

$$
V+V_{\mathrm{bi}}=q N_{\mathrm{b}} \mathrm{~d}^{2} / 2 \epsilon \epsilon_{\mathrm{o}}
$$

where q is the electron charge and ϵ is the elative dieclectric constant typically 10 15. Junction capacitance is

$$
C_{\mathrm{d}}=A \epsilon \epsilon_{\mathrm{d}} d
$$

where A is the area of the junction. Thes elationships are plotted in Fig. Doping levels of 10^{12} to $10^{13} \mathrm{~cm}^{-3}$ are available in silicon, so that a few tens of microns can be depleted at 5 to 10 volts. m^{-3} are the best normally available, that 15 to 20 volts are required to deplete ew microns. Junction capitance is ypically 0.1 to 0.5 pF for a high-speed device so that the capacitance of packaged devic The reve
The reverse-bias leakage current (dar because the shot noise on this current ca be the dominant receiver noise in som situations. The dark current is caused by current leakage over the surface of th
device as well as through the depletio region (bulk leakage). Surface leakage is minimised by careful processing and by coating the device with a passivating layer methods vary from one material
another. Bulk leakage is due to diffusion o minority carriers from the undepleted

Fig. 5. Signal-to-noise ratio is improved as
a result of avalanche gain Parameter is a result of avalanche gain. Parameter xis
the exponent in the empirical expression the exponent in the empirical expression
for the excess noise factor $F=M^{x}$. Value of for the excess noise factor 0.3 to 0.5 relates to silicon reach-through diodes while germanium
have a value close to 1.
regions and by generation and recombination of carrier pairs in the depletion region. The diffusion term usually dominates in materials with a large intrinsic carrier concentration, such as recombination term is the most important in silicon and in most III-V compounds of interest.
Detection in the presence of noise The most important parameter of any receiver is its sensitivity, and there are several factors which prevent arbitrarily
weak signals from being handled. The ignal will have suffered various mpairments during transmission, because of the dispersion and attenuation of the fibre. In addition to being distorted, the signal leaving the optical receiver has
wideband random fluctuations produced by the components of the amplifier. Lastly, even with an infinite fibre bandwidth and a noiseless amplifier, the optical signal itself is statistical because of the quantum nature of light. Radio waves
are also quantized, of course, but the are also quantized, of course, but the
quantum energy $h v$ is much less than the thermal energy $k T$ of electrons in the amplifier components so that quantum ffects do not show up at radio requencies. At room temperature $k T / h$ is
about 6000 GHz , well above the highest requencies used in radio transmission, and well below the frequency corresponding to a wavelength of $1 \mu \mathrm{~m}$, which is 300 THz . Photons arrive at the detector at random instants with a Poisson variance in arrival rate is equal to the mean. If the expected number of photons in some time interval in m, then the robability that the number detected will n is

$$
p(n)=\operatorname{Pos}[n, m]=m^{n} \mathrm{e}^{-m / n} n!
$$

Consider a binary digital system in which ne needs to decide whether or not a pulse was received during each bit period. The or each bit period, and if that numbe exceeds some threshold number d a onepulse is recorded, otherwise a zero is recorded. Errors occur if n is less than d easy to see that fewest errors are made

When the threshold d is set between 0 and photons. The error probability is then $P_{\mathrm{e}}=$ e^{-m}, and one cannot have zero erro probability with finite m. For $P_{\mathrm{e}}=10^{-5}$,
$=11.5$ and for $P_{\mathrm{e}}=10^{-9}, m=20.7$. In an analogue system, we are interested in the signal-to-noise ratio (snr) at the receiver output with a post-detectio bandwidth B which smooths fluctuation over an integration time $t=1 / 2 B$. If the
mean photon arrival rate is r, then the number m which arrives, on average, during the time t is $m=r / 2 B$. At the output of the receiver, the signal power is
proportional to m^{2} while the noise pow proportional to m^{2}, while the noise powe is just m. Thus signal-to-noise ratio is
$m^{2} / m=r / 2 B$
For example, a 50 dB signal-to-noise ratio and a 1 MHz bandwidth requires, average, length of $1 \mu \mathrm{~m}$.
That is the best performance one could expect, even with a perfect detector and a noiseless amplifier, limited only by the
quantum fluctuations in the incoming quantum fluctuations in the incoming
optical signal. In real life, amplifiers are optical noiseless because electrons in the conductors move with randomized velocities with energy $\sim k T$, and the
amplifier has to have non-zero input amplifier has to have non-zero input
conductance. Using conventional components, an amplifier with input

Fig. 6. Silicon reach-through avalanche
photodiode is made by diftusion and photodiode is made by diffusion and
implantation of dopants into a low-doped silicon substrate. Guard ring lowers electric field at the perimeter of the junction,
preventing premature breakdown. preventing premature breakdown. avalanche photodiode in a TO-18 can is the
RCA 3090ZE.

10 MHz would. need to have an input esistance of about 10kohm or less loading he photodiode. The mean square therm noise voltage in a bandwidth B due to a
resistance R is $\left\langle V^{2}{ }_{\mathrm{T}}\right\rangle=4 k T R B=8.3 \times 10^{-10}$ V^{2} at room temperature for an R of kohm and $B 10 \mathrm{MHz}$. The signal voltage generated across R due to m photons at a wavelength of $1 \mu \mathrm{~m}$ detected in time t is V $=m q R / t=1.6 \times 10^{-8} \mathrm{~m}$ volts. The signal
${ }^{\prime}\left(1.6 \times 10^{-8} \mathrm{~m}\right)^{2} / 8.3 \times 10^{-10}=3 \times 10^{-7} \mathrm{~m}^{2}$
so that in a digital system of 22 dB ratio, m is about 20,000 photons in a bit period
(taken as $1 / 2 B$ here). This is 1000 times (taken as $1 / 2 B$ here). This is 1000 times o
30 dB greater than the quantum nois limit, which justifies ignoring quantum noise in this calculation. As 30 dB can be translated into perhaps 100 km of extr
fibre at 1.55 mm - by no means a smal fibre at $1.55 \mu \mathrm{~m}$ - by no means a smal
benefit - one would like to improve this situation. There are four ways of increasing the receiver sensitivity to consider. Reducing amplifier noise is one
way, obviously - disclussed see way, obviously - discussed see later section, and in the last section of this article two other ways are considered optical amplifiers and coherent detection.

Avalanche photodiodes

An electron or hole accelerated by an electric field may gain sufficient energy so
that when it is scattered by the lattice lattice atom is ionized, creating an electron-hole pair. The newly created carriers can then cause impact ionization and so lead to an avalanche process with urrent gain.
of causing impact ionization the avalanche process would advance across the high field region, the number of carriers increasing exponentially with distance but emaining finite: avalanche breakdown
would be impossible. In real materials, however, both. carrier types can cause impact ionization, usually with different efficiencies, providing a regenerative or positive feedback mechanism which can
lead to a (theoretically) unbounded number of carriers in the breakdown. The avalanche current gain M is plotted as a function of electric field in Fig. 4; k is the ratio of ionization rates for electron and
holes. The gradient of all the curves in holes. The gradient of all the curves in Fig.
4 becomes infinite for some finite field, except for $k=0$. The implication is as follows: to get useful current gain from the diode it must be biased close to breakdown - very close if k is near to unity. But any perfectly uniform or the supply voltage being imperfectly regulated causes a change in the current gain, and this change can be large if k is near unity. The current gain becomes variable and also noisy. In
silicon k can be as low as 0.01 , and silicon diodes can be operated at gains of a few hundred or even thousands in some cases. n germanium and many III-V compounds, k is $0.3-1$ and it is hard to
fabricate and control a device for a gain

WIRELESS WORLD APRIL 1982

Fig. 7. Some published results on receiver
sensitivity in experimental sensitivity in experimental optical fibre
transmission systems. Circles represent germanium diodes, and the slope of approximately 1.25 is expected for an
excess noise factor exponent x close to unity. Filled squares are for p-i-n-f-e-t
above 10 to 15. There are also nois
problems associated with a value of k clos to unity.
How is this current gain used to improve Current gain arising from avalanche gaver Current gain arising from avalanche gain
increases the signal voltage across the amplifier input and so improves the signa-to-noise ratio as the amplifier noise i
unaffected. However, the current gain increases the quantum noise by the same amount as the signal, so that one canno get beyond the quantum noise limit. In practice one cannot even get near to because of extra noise introduced by the random impact ionization process.
Consider a steady optical power P incident on the detector. The resulting multiplied photocurrent is $\left\langle i_{p}\right\rangle=2 P \eta q M / h v$. Th mean square shot noise current on the $B M^{x}$, where M^{x} is the excess noise facto from the avalanche gain process ($0<x<$ 1). The mean square thermal noise curren is $4 k T B / R$. So the output power signal-to noise ratio
$(2 P \eta q M / h v)^{2}$
$\frac{(2 P \eta q M / h v)^{2}}{2 p \eta q^{2} R M^{2+x} / h v+4 k T B / R}$
With $M=1$ the thermal noise term dominates. As M is increased from unity the signal power increases as M^{2}, but so the total noise power is little affected and the signal-to-noise ratio increases. When M is large, thermal noise is insignificant and the signal-to-noise ratio decreases with ${ }^{x}$. There is an optimum avalanche gain:
$M^{2+x}=(4 k T / R)\left(h v / x P \eta q^{2}\right)$
so that
Shot noise
$\frac{\text { Shot noise }}{\text { Thermal noise power }}=\frac{2}{x}$
WIRELESS WORLD APRIL 1982
he empirical parameter x is related to he ratio of ionization rates for holes an lectrons. Both depend on the material and also on the electric field strength and is 0.3 typically. In germanium, k i between 0.7 and 1 and x is close to 1 . In III-V alloys, k ranges from 0.2 to 1 and x is 0.7 to 1 . The equation is plotted in Fig. 5 with different values of x. If x is small, as with a silicon diode, the optimum gain is
large and the maximum in signal-to-noise ratio is broad. The diode can, in fact, be used to vary the gain of the receiver and so provide a.g.c. When x is near unity, less mprovement is possible, the optimum gain is lower and the maximum much control for optimum performance.
The theory of the avalanche process and the statistics of excess avalanche noise ar important in the study of optical receivers but they are beyond the scope of this
article - consult the papers by McIntyre and co-workers in the bibliography for further details (part 2).
To make an avalanche photodiode in silicon with a fast response a simple p -n
junction will not do because junction will not do because most photons where the field is negligible. It is necessary to use the "reach-through" structure shown in Fig. 6 in which the depletion region consists of a high-doped, high field-
gain region followed by a lower field, lowdoped absorbing region. The problem is to ensure that the absorbing region is fully depleted well before the gain region break down, and this demands great control ove the fabrication of the device. Nevertheless, good commercial silicon reach-through
diodes have been on the market for several years.
Most system work at longer wavelengths has been carried out using germanium an obvious material, as the photodiode can be made sensitive out to $1.6 \mu \mathrm{~m}$ and beyond by reducing the thickness of undepleted material near the surface Germanium is not ideal because the ratio
of ionization coefficients k is close to (i.e. $x=1$) so that the excess noise factor is high. More importantly, the reverse bias leakage current density is high because the high intrinsic carrier concentration results in a large diffusion contribution to the leakage current. The unmultiplied leakage
current density is typically $3 \times 10^{-4} \mathrm{~A} \mathrm{~cm}$ at room temperature, sufficient to cause a

Fig. 8. Group III-V heterostructure a.p.d. has the high-field (gain) region within the
large band-gap InP layer.
sstem penalty of a few decibels at a dat rate of a few hundred $\mathrm{Mbit} / \mathrm{s}$. The leakag $50^{\circ} \mathrm{C}$ is about an order of magnitud $50^{\circ} \mathrm{C}$ is about an order of magnitud system penalty and reducing the optimum gain to about 3 to 5 as the dominant nois ource may be multiplied bulk leakage. At oom temperature, receiver sensitivities of 34 dBm at 400 Mbaud and -30 dBm at 80 germanium photodiodes. These figure would be several dB worse at $50^{\circ} \mathrm{C}$ Published receiver sensitivities at 1.3 and $1.55 \mu \mathrm{~m}$ are shown in Fig. 7 for th available range of bitrates, and it can b seen that the bit-rate dependence
approximately the $5 / 4$ power, as one would expect from an a.p.d. with an x-factor nea unity. Also shown are the results for p-ireceivers with a $3 / 2$ power dependence, a discussed in part 2 of this article.
In pursuit of the excellent performance effort has been expended in research on diodes made in III-V compounds. To dat no system results have been reporte although there is much published materia
on the devices themselves on the devices themselves. As with beyond $1 \mu \mathrm{~m}$. The main work has been carried out on the GaInAsP/InP system and until recently avalanche gains in the region 10 to 20 were typical, limited probably by non-uniformity of the
material of the high-field region leading too micro-plasma breakdown. Mor recently, a structure with the high-field region in InP has been described as shown in Fig. 8, and gains of up to several thousand reported. A different reverse-
bias leakage current mechanism becomes important in the high-field region of III-V diodes: tunnelling of electrons from the valence band to the conduction band. This leakage is very sensitive to field and to band-gap. The implication is that the dark
current can be reduced to an acceptable level only by keeping the high field regio to low-doped, large band-gap material such as InP. The excess avalanche noise properties of the device then depend on
this material. this material.

Correction

Phase-shifting oscillator, By Roger Roosens
A number of misprints crept into this article
published in published in the February issue, for which we
must apologise. Many of te must apologise. Many of the mathematical for
mulae were affected and we would be happy mulae were affected and we would be happy to
provide interested readers with a corrected copy
if they send us a stampeddaddresed provide interested readers win a corrected cop. The author has asked us to point out that
distortion was measured using fixed 1% resis distortion was measured using fixed 1% resis
tors for the tuning elements. Such figures could
not be achieved with not be achieved with a two-gang potentiometer. A numerical analysis of the thermistor distor-
tion was made with a compute and te result tion was made with a computer and the results
were compatible with calculated ones. The onl were compatible with calculated ones. The only
signicant distortion generated in the n.t.c. is third harmonic.
The measured distortion figures show that
the second-harmonic distortion of the circuit the esecond-harmonic distortion of the circuit
increases at low frequencies. This is due to
second-order effects in the second-order effectst in the i.cs due to tempera-
ture variation with the oscillator distortion sets the performance limit of the cir cuit at low frequencies.

HEATING-FUEL SAVER

Over the season some saving can be made in heating fuel bills by switching on later when the weather is less cold. This feature is usually incorporated in large systems but the unit described, which may be built at low cost, is intended for domestic use. There is an outdoor temperature sensor which is not essential but may be used to monitor the heating system.

The outdoor sensor is a thermistor, of which the resistance $\left(R_{t}\right)$ must be known, or measured, at three relevant temperatures, for example $0^{\circ}, 10^{\circ}$, and $20^{\circ} \mathrm{C}$, which tance R_{s}, across a stabilised voltage. By appropriate choice of R_{s} (see appendix), the relationship of the mid-point voltage V_{t} to temperature can be quite well linearised, as shown in the table. The timing circuit uses a slowly-rising voltage V_{p}, and when V_{p} reaches V_{t}. The ramp voltage V_{p} is generated digitally using a data-a converter in the prototype the popular Ferranti ZN425E, clocked at v.l.f. to give for example a delay of one hour per $10^{\circ} \mathrm{C}$.
The power supply section shown in Fig 2 is suitable for a standard 24 V d.c. octalbased relay, of which the coil resistance is yypically 470 ohms. If a different voltage is used, R_{d} should be adjusted to give 8-12V
input to the regulator.

Counting-up

In Fig. 3, the 425 internal counter is brought into use by tying pin 2 high. The internal resistance ladder is connected to he internal reference source ($V_{\text {ref }}$) by joining pins 15 and 16 , and the analogue

$$
V_{\mathrm{p}}=V_{\text {ref }} \times N / 256
$$

where N is the count reached. The counter has eight stages, and the maximum count or 255 . The nominal reference is 2.56 V , giving 10 mV per count, but its exact value is unimportant, since the thermistor R_{t} is

$$
V_{\mathrm{t}}=V_{\mathrm{ref}} \times R_{\mathrm{s}}\left(R_{\mathrm{s}}+R_{\mathrm{t}}\right.
$$

Thus the count required to make V_{p} exceed V_{t}, and so turn on the relay via comparator $\mathrm{IC}_{2 \mathrm{a}}$ is given by:

$$
\begin{aligned}
& N=\text { nearest whole number above } \\
& \left(256 \frac{V_{\mathrm{t}}}{V_{\text {ref }}}=256 \frac{R_{\mathrm{s}}}{R_{\mathrm{s}}+R_{\mathrm{t}}}\right)
\end{aligned}
$$

The table shows N values for various temperatures, relating to RS code 151-237 hermistor, which is a close-tolerance device ($\pm 0.2^{\circ} \mathrm{C}$). Resistance R_{s} should be
made up to within 1% from metal-film
by David Ryder, Ph.D.
resistors. Other thermistors can be used by measuring them and calculating the appropriate Rs (see appendix). Setting-up is substitute for the thermistor at say $0^{\circ}, 10^{\circ}$, and $20^{\circ} \mathrm{C}$, and in the prototype these were built in using a four-way switch.

Circuit operation

The 425 is clocked, pin 4, from a conventional 555 oscillator divided by a c.m.o.s. 4040 B . The division ratio to 4040 pin 1 is 4096, and to pin 3, 64, the latter output being used via Tr_{3} to flash an 1.e.d,
and via S_{1} to give fast clocking of the 425 for test purposes. From the table the number of counts between $0^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ is 59 , and if this is to occupy 59 minutes, one $60 / 4096 \approx 00146$ cec period must be gives a range of about 1 to 3 hours per gives a range
$20^{\circ} \mathrm{C}$. The comparator IC_{a} has an open-collector output, which is pulled up by the 1 k resistor, and the relay is switched via Tr_{2}. The positive feedback from the output C latch the comparator, since V_{t} may subsequently rise above V_{p}, but diode D_{4} avoids loading on the input, and so on the 425

Fig. 1. In-line connection of delay unit
between time-clock and load

Fig. 2. Power-supply section. The regulator may. 2. Power-supply section. 100 mA or 1 A type.
Linearisation of RS code 151-237 thermistor, using calibration points $0^{\circ}, 10^{\circ}$, and $20^{\circ} \mathrm{C}$, resistor $\mathrm{Rs}_{3} 15,485$ ohms.

${ }^{\circ} \mathrm{C}$	-5	0	5	10	15	20	25
$\mathrm{R}_{\mathrm{f}} \Omega$	42,295	32,650	25,377	19,900	15,701	12,490	10,000
$\mathrm{~K}_{\mathrm{f}} / \mathrm{r}_{\text {ref }}$	0.2680	0.3217	0.3790	0.4376	0.4965	0.5535	0.6076
Error C	+0.4	nil	-0.1	nil	+0.1	nil	-0.3
N (counts)	69	83	98	113	128	142	156

output, during the count-up, when C is low. The 'Set' button allows the relay to be closed without waiting for the time delay. The 'Reset' button resets the 425 coun ter, pin 3, resets the comparator via D_{5}, and resets the 4040 via the p -n-p inverte
Tr_{1}. At switch-on, the same function performed by the $10 \mu \mathrm{~F}$ capacitor, which delays the rise of point B. The 4040 (alone) is also reset via D_{6} when C eventually goes high, stopping the count at this point, and causing the l.e.d. to glow continuously. The op.amp section of IC_{2} is used to
drive a milliameter from V_{1} to indicate outdoor temperature, and almost any f.s.d. can be used up to say 5 mA . In the prototype an existing 0-100 scale was used for degrees Fahrenheit, and the biasing
shown, R_{b} and R_{f}, gives a reading of approx 32 at $0^{\circ} \mathrm{C}$, which can be trimmed by the mechanical zero adjustment. The resistance of R_{m} was made up to give a swing of 36 divisions between $0^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$
and $\left.68^{\circ} \mathrm{F}\right)$. The meter may of course be and $68^{\circ} \mathrm{F}$). The meter may of course be
remotely mounted, perhaps alongside your

barome

counter outputs of the 425 are available at pins $5-7$ and $9-13$, and in that order have weights $1,2,4 \ldots$ 128. A count of 83 for example, or $64+16+2+$ 1, corresponds to pins $12,10,6,5$ high (and the rest low), and this allows the tances, and the 'fast' setting of S_{1}. An error of one count is not important. The 555 timing can be checked by a frequency meter, or from the $1 . e . \mathrm{d}$, which flashes 64
times per 'normal' 425 count.

Variations

The basic circuit still has a long delay in cold weather, for example 69 counts at $5^{\circ} \mathrm{C}$, and though this can be compensated by advancing the time-clock, it is more elegant to suppress it by jumping, clocking
the 425 directly from the oscillator, point F , until an appropriate count is reached. Figure 4 shows two possible circuits, 4(b) being that used in the prototype. The logic shown may be realised in various ways, but to lay out on Veroboard.
If it is required to use the thermometer when the time-clock is off, the delay unit must be continuously-powered, and reset may then be modified to Fig. 5 , in which the time-clock signal is detected by a tran limited by D7. Resistor Rr should pass 510 mA rms, and may be replaced by a capacitor, say $0.1 \mu \mathrm{~F}$, provided it is a type suitable for continuous mains working. The
intermittent output allows the $1 \mu \mathrm{~F}$ capaci-

Low-power grid

blanking

Electron-beam blanking at the first grid can involve much higher voltages than cathode blanking but is sometimes desirable. This circuit was designed for digitallyused for quantitive light measurements. The grid voltage (equal to V_{-}) can be accurately controlled during the active picure line and transitions to and from the blanking potential are short, at 40 ns and
300 ns respectively, with Schotky t.t.1. input is used.
Because grid-leakage current is extremely low, the high voltages required can be achieved by switching the connections of a charged capacitor. When the off and Tr_{1} and Tr_{3} turned on so that the voltage over capacitor $\mathrm{C}, V_{\mathrm{C}}$, is the difference between the rail voltages, $V_{+}-$ V.. The output to gl is held at the negative rail, which controls the beam current. are turned off and Tr_{2} turned on, so that are turned off and Tr_{2} turned on, so that
the more positive side of C is taken to $V-$ and the negative side consequently to the

blanking potential, $V_{-}-V_{\mathrm{C}}$ which is also
$2 V_{-}-V_{+}$. The droop $2 V_{-}-V_{+}$. The droop in blanking poten ligible in normal use. There is no droop in the beam-control voltage as Tr_{3} remains sufficiently conductive throughout the ac-
tive line. The g1 lead must be kept well away from the target connection to avoid D. J. Thomas

MRC
Cambridge

Telephone-line interface

 Conventional telephone-interface circuits use relays and/or transformers for loop detection and speech coupling. In this cir-cuit, a 5 V positive-voltage regulator is used o feed a constant current to the telephone ine. The line current is set by R_{1} and the regulator output provides a logic signal hat will 'follow' dialling pulses from the As this
tansmission circuit provides unbalanced uitable for internal (intercom it is only changes. A ring circuit could be provided by a third wire to the telephone. Acknowpermission to publish this information.
$\underset{\star \text { British Telecom Research Lab }}{\text { F. }}$ *British

$Z 80$ memory mapping

 R.a.m. area for interrupt restart vectors and e.p.r.o.m. write protection are provided by this automatic memory map andswitch for a $Z 80$ microprocessor system. On power-up, or after a reset, a 2 K -byte e.p.r.o.m. (2716) occupies addresses 0000 to 07 FF and a 2 K -byte r.a.m. is address mapped to F800-FFFF. After a reset, the
Z80 will perform an op-code fetch from location 0000 . The e.p.r.o.m. will be selected after MREQ is activated. The instruc tion at locations 0000 to 0002 is JP F803
and the circuit will automatically switch r.a.m. and e.p.r.o.m. locations after the third memory access. The next op-code etch will occur at location r803, causing tiguous location in e.p.r.o.m. Locations 0000 to 07FF are now occupied by the 2 K r.a.m. so it is possible to initialize and modify the interrupt restar vectors, hence C. Jay Fairchil Bristol

Testing p.r.b.s:

generators

Readers experimenting with p.r.b.s gener ators may find this circuit useful fo evaluating possible feedback configura-
tions. Driven by an external clock at any speed up to a few hundred kHz , it gate clock-pulses to an external counter fo exactly the duration of one complete sequence, maximal or otherwise, so that the the sequence. The generator is preset so that the count begins almost immediately. The shift-register shown has n effective stages and is negative-edge triggered (e.g. 4006's); for a positive-edge triggered shift-
register the inverted clock-signal is used register the inverted clock-signal is used.
When the system is at rest, both flip flops are in the reset state and no clock pulses appear at the output. Point A is low
so the auxiliary counter is held at zero and the input to the shift-register is held high After a maximum of n clock-cycles all the stages of the shift-register will be in th high state, and the system ready to start. The start button sets the start flip-flop incoming clock-signal; contact-bounce has no effect. Point A goes high. This allows the generator to run normally, with its output (from stage n of the shin-register) the generator output is high, the counter advances one count on each positive-going transition of the incoming clock-signal when the generator output is low the counter is held at zero.
Once per complete sequence the genera-clock-cycles; the counter then reaches the count of n causing point B to go high until
the counter is reset (nominally a half clock cycle later
Because all stages of the shift-registe were initially preset to the high state, the first signal at B occurs during the n^{\prime} th clock-cycle from the start. This signal set the gate flip-flop. This in turn allows
clock-pulses to appear at the output, and also resets the start flip-flop while main taining point A high so that the system continues to run. These conditions con tinue until the next signal appears at B exactly one sequence later, and resets the
gate flip-flop; then the clock-pulses cease to appear at the output, point A goes low, the generator ceases to run, and, after a maximum of n clock-cycles, the system back in the ready state.
button will return the

Bucknell
Shropshire

Output to counter
(negative-going pulses)
WIRELESS WORLD APRIL 198

DESIGNING WITH MICROPROCESSORS 13

Clear-cut step-by-step procedures for the design and implementation of d.m.a. interfaces are described. Specifically, it is proved that in the case of action/status peripherals the interface reduces to two wires.

The block diagram of a d.m.a. system is shown in Fig. 1. The function and opera-
tion of the address decoder, the d.m.a. controller and the cycle-steal logic has been explained in the previous article (February, 1982). Briefly what happens is this. The programmer sends to the d.m.a. three items of information specifying (i) the starting memory address, (ii) the size of the block, and (iii) the direction of transfer, followed by the ' g o' command On receipt of the 'go' command, the d.m.a. by pulling enable signal E in Fig. 1 high (E $:=1)$. When activated, the interface monitors the status signals of the peripheral, and requests a cycle steal when the peripheral is ready. When the microprocessor responds, the interface and the -d.m.a.
controller generate the appropriate command signals needed by the peripheral and the memory chip for the transfer of one item of information (usually a byte) be tween them. At the end of each cycle steal,
the memory address is incremented/decremented, and the word count is decremented ($n:=n-1$). This process continues until the word count reduces to zero (n $=0$), at which time the interface is disabled and

D.m.a. interfaces

The function of d.m.a. interfaces is to request the microprocessor to go on hold when the main memory is to be accessed,
and to generate the appropriate signals needed by the peripheral when the memory becomes accessible. In the case of cycle-steal systems, as we have already seen, the hold request is generated each time the memory is to be accessed, and removed after a memory cycle is granted.
The block diagram of a suitable d.m.a. interface, assuming logic signals throughout, is shown in the shaded section of Fig. 2. It operates in the following When
When logic block 1 recognizes that the peripheral is ready to be accessed, it sets llip-flop 3 by pulsing its clock terminal. Its output is Anded with the enable signal E to produce the cycle request signal c. (Assyme $e=1$. When the requested mernory pulse is generated on line k . Signal h being

* Department of Computer Sclence, University

by D. Zissos* assisted by Glen Stone*

high, and $E=1$, activates logic block 2, which responds by generating the appro priate command signals needed by the peripheral for accepting or receiving an
item of information. Similarly, pulse k activates the d.m.a. controller, which ini-

Fig. 2. Block diagram of peripheral interfaces in d.m.a. systems 'shaded section
WIRELESS WORLD APRIL 1982
tiates either a memory read or a memor write cycle. At the end of the memory
cycle the microprocessor resumes norma activity, until the peripheral becomes ready, which causes logic block 1 to pulse the clock terminal of FF3. This pulls the cycle-steal line chigh and sometime later a established for a memory cycle. The process repeats itself until the last item has

Figg. 3. D.m.a. interface for action/status
peripherals.

Fig. 5. Circuit implementation of d.m.a ${ }_{s}$ shysiems
been transferred between the peripheral and memory. At this time the d.m.a. controiler generates end-of-transfer signa,
ϵ, to inform the system that the requested block transfer has been completed. The system responds by turning signal E off, this disables the interface.

WIRELESS WORLD APRIL 1982

To prevent the word count from wrapping round, that is changing from all os to
all 1 s , after the last piece of information in our block has been transferred in or out of the main memory, it is necessary to disable the interface before the peripheral be comes ready. Because software response invariably involve a time lag, depencing on
system activity at the time and on the level of priority assigned to the ϵ flag, it canno be used for this purpose. The most straighforward method in such a case is to use signal e in Fig. 3 of the previous articl to disable the interface. Signal e,
reader will recall, changes to 1 at the end of the block transfer, that is when the word count becomes zero. Otherwise, the design and implementation of peripheral interfaces in d.m.a. systems, as indeed in all
digital systems, is uncomplicated and is carried out using well-defined step-by-step procedures.

The two-wire interface

In the case of action/status devices and no external signals, signal r_{n} is generated directly by the peripheral, thus eliminating the need for logic block 1 and FF3 in Fig. logic block 2, as shown in Fig. 3 .

Fig. 4. The two-wire interface.
Now, to avoid possible problems resulting from peripherals being activated while data transfers take place, a peripheral will nated; that is, when the value of h changes from 1 to 0 . Since action/status peripherals are activated by pulling their action terminal high, it follows that
That is, logic block 2 reduces to a single inverter, as shown in Fig. 4.
The detailed circuit implementation of a
.m.a. system is shown in Fig. 5.

D.m.a. software

Because in d.m.a. systems transfers of data between a peripheral and the main memory take place autonomously, software is needed only to send initializing Fig. 1, and to clear the end-of-transfer signal, ϵ, if it is implemented as an in-
terrupt flag. The initializing information, as we have already explained, consists of he following items
-the starting address
-the direction of transfer, and -the 'go' command.
It is transferred into the d.m.a. controller
in the following manner. The programer loads the accumulator with the initial memory address and executes an Out instruction with address A_{p}. This pulses the load terminal of the two counters, which
transfers the accumulator contents (the initial memory address) into counter 1. At the same time, because the two counters are connected in cascade, the contents of counter 1 are pushed into counter 2. The programmer then transfers into the accusame Out instruction. This causes the memory address in counter 1 to be pushed into counter 2, and the value of the block ength (held in the accumulator) to be oaded into counter 1 .

LITAR/ATMRE REGEIVje

SE labs have issued a new shorfform catalogue on the company's range of instrumentation
tape recorders. There are a large number of fecorders for laboratory or field use with variety of numbers of track and recording speeds up to the SE9000, a 42 track digital EMI Itd, Spur Road Felthis, SE Labs EMI) Ltd, Spur
TWW 140 TD .

The Micro Focus Newsletter has been prouced to keep readers up to date with the latest COBOL computer language products and deelopments. COBOL is in increasing use in microcomputers and Micro Focus have an-
nounced a COBOL II which may be used on both mainframes and micros. The Newsletter is available free from Micro Focus, 58 Acacia
Road, London NW8.

The 1981/82 Colorado Video short form catalog describes a series of specialised video instruments designed for slow scan tv telecommunications, computer//video input and output, mea-
surement and analysis. The UK agents are Anaspec Ltd, Pearl House, Bartholomew

WW403
RS Catalogue. The latest edition of the catalogue from RS Components Ltd has 344 pages and includes a newsheet called Rapid Scan,
which is running a competition to find out who which is running a competition to find out who
is RS's longest standing customer. Anyone who is
can find an on old catalogue, delivery note or invoice from RS (or Radiospares as they were hen) could win a magnum of champagne. The
catalogue lists as additions to its contents over catalogue lists as additions to its contents over
75 items including data transmission cables, splashproof connectors, a bubble etch tank for .c..b.s, a front panel with keyboard and the .c.bs for a programmable etimer, many new
displays, a wide selection of tools and accessories and additions to the engineers bookshelf. 13-17 Epworth Street, London EC2P 2HA.

Fig. 6. D.m.a. software.
Next the programmer executes another Out instruction with A_{q} if the block of data is to be read from memory, and with address A_{r} if the data is to be written into the memory. In the first instance FF1 is
set, and in the second is reset. The 'go' command consists also of executing an Out instruction with address A_{s}. Execution of this instruction sets FF2, turning signal E on which initiates the block transfer. For ease of reference the d.m.a. software is
flowcharted in Fig. 6 . In our case acknowledging the end-of-
transfer flag (ϵ) consists of resetting FF2, transfer flag (ϵ) consists of resetting FF2,
that is of executing an out instruction with that is of executing an out instruction with
address A_{r}.

Racks. The full range of Series 80 instrument
racks. from Imhof-Bedco Standard Products racks from imhor-Bedco Standard Products
Ltd, Ashley Works, Ashley Road, Uxbridge, Middlesex, is detailed in a catalogue available from the company. The range includesesthenew
S80/600 racks which meet the latest IEC297 specification. Detailed with the racks is a range speciifcation. Detailed with the racks is a range
of standard accessories such as tops, doors, mo-
bile bases, etc.

WW405
A wide range of TMK testmeters including digital multimeters, clamp ammeters and industrial themometers, is detailed in literature
from Harris Electronics (London), 138 Gray's from Harris Electronics (London), 138 Gray's
Inn Road, London WC1X 8AX.
The French company Radiall offer a short cataThe French company Radiall offer a short cata-
logue of microwave components, including transitions, couplers, attenuators, relays and isolators. Write to Microwave Components,
Lts, Invincible Road, Farnborough, Hants. A forty-page catalogue of panel met eters and test equipment is available from Bachimpson, who are at Trenant Estate, WadeSimpson, who are at Trenant
bridge, Cornwall PL 276 HD .

$9 \mu \mathrm{~s}$

AtoD in 9μ seconds. And that's only the start.

The fact that the new Ferranti ZN447 ZN448 and ZN449 A to D converters are probably the fastest microprocessor compatible converters on the market is only one reason for choosing them

They offer a better cost/performance ratio than others.

They have bus compatible, three-state outputs and control inputs for easy microprocessor interfacing.

They come complete with on-chip clock and precision bandgap reference, needing only passive external components to operate with unipolar or bipolar input voltages.

You get a wide choice of error specification and operating temperature ranges.

And simple operation.
Send for data or contact,
Ferranti Electronics Limited,
Fields New Road, Chadderton, Oldham OL9 8NP Tel: 061-624 0515 Telex: 668038

WW - 037 FOR FURTHER DETAILS

ELECTRONIC ORGAN WITH PIPE ORGAN SOUND

Observation of the waveforms emitted from a pipe organ show that many of them are triangular or closely related in shape. This design uses triangle-wave generators in a simplified organ system to reproduce them, and offers more accurate sound than those organs using sine, pulse, saw-tooth or square wave generators.

The signals from the waveform generators can be fed by way of an appropriate stop, directly to the output amplifier withou
any filter. This simplifies the design and the use of high-level signals reduces noise problems.
If a triangle wave is rectified, an open diapason sound is produced. Full-wave
rectification produces a triangle wave of twice the frequency which can be used as a 'four-foot flute' stop.
To reduce the cost and complexity of the organ, a multiphonic system ${ }^{1}$ has been used which required only six generators, however many alternatives are possible. An on/off detector to drive the attack delay modulators has been developed which provides an improved performance.

by J. H. Asbery

Ph.D., M.I.E.R.E.

The detector can also be used with othe synthesizer circuits to eliminate one pole o synthesizer circuits to eliminate one pole of
the switching system. An ultrasonic signa is superimposed on the d.c. voltage of the resistor chain of the keyboara. When a key is pressed, this signal appears at the inpu of $I C_{2}$ which switches on the modulators at a steady rate and switches them off at
steady rate when the key is released. Col lector resistors R_{54} and R_{58} of Tr_{3} and Tr_{4} can be common to all generators and
should be positioned close to the amplifie to avoid pick-up from the common earth wiring.
To produce an 'eight-foot diapason' sig nal it is not necessary to rectify the original
triangle wave. By resistively mixing the triangle wave. By resistively mixing the
original wave with one at half the amplitude of the full-wave rectified signal, the required tone is formed (at $\mathrm{R}_{56}, \mathrm{R}_{57}$)
Switching transistor Tr_{2} is used in th reverse mode to reduce the voltage dro The capacitor across the volume contro $\left(\mathrm{R}_{63}\right)$ compensates for a loss of sensitivity at low frequencies.
The complete organ is powered by a amplifier has been left to the constructor.

Components	
Resistors	
$\begin{aligned} & 1 \text { to } 23 \text { a se } \\ & \text { from } 10 \Omega \text { up } \end{aligned}$	set of music scale resistors upwards
	165 1\%
25	162 1\%
26,27, 28	33k
29,30, 31	10k
32,33	33k
34	68
35,36	100k
37	220k
38	20k 5\%
39,40	20k 5\%
41	10k
42	1k
43	1.2k 5\%
44	470
4511	11.5k
46 2	23k 1\%
47 20	20k 5\%
48 20	20k 5\%
49 4	47k
$50 \quad 1$	15k
51	15k
52 1	15k
53 15	15k
54 1010	10k
55,56 100	100k
57 220k	220k
58 110	10k
59 103	100k
60 3	33k
61 162	165 1\%
62 162	162 1\%
63 101	10k
64 3k	3 k preset (tuning)
65 10	10k
Capacitors	
2	2.2n
2,3,4,5 0	0.1 μ
2	220μ
	0.18μ
1	15n
	0.47μ
$\begin{array}{ll} \text { 10R } & 0 . \\ & \text { ge } \end{array}$	0.025μ (right-hand generators)
$10 \mathrm{~L}$	0.1μ (left-hand generators) (Both $2 \frac{1}{2} \%$ polystyrene)
	0.1μ
$\mathrm{IC}_{1}, \mathrm{IC}_{2}, \mathrm{IC}_{3}$	C3 709
$\mathrm{IC}_{4}, \mathrm{IC}_{5}, \mathrm{IC}_{6}$	$\mathrm{C}_{6} 741$
Tr_{1}	BC149 or similar
$\mathrm{Tr}_{2}, \mathrm{Tr}_{3}, \mathrm{Tr}_{4}$	r_{4} BC307 or similar
$\mathrm{D}_{1}, \mathrm{D}_{2}$	- 1N4148
	(8ft flute)
	(8ft open diapason)
	(4ff flute)
Component kits are available from the author at 87 Oakington Manor Drive, Wembley, Middlesex.	
Reference 1. Asbery, J. H. Multiphonic Organ, Wireless World, June 1973, p. 303.	

Fig. 1. Multiphonic organ system based on six triangle-wave generators.

D O O MS

computing

Practical Trouble-shooting Techniques for
Microp Microprocessor Systems, bect. W. Coffron.
246 pages, hardback. Prentice-Hall, $£ 13.95$ Fault-finding techniques for the hardware of 8 bit systems using 8080,8085, Z 80 and 6800
microprocessors. Final chapter devoted to TRS 80 microcomputer.
The S-100 and other Micro Buses, by E. C.
Poe and J. C. Goodwin Prentice-Hall, $£ 6.95$.
The S-100 and 20 other bur most of the popular microcomputers. Includes
description of methods aplied to description of methods of converting signals on
other buses to other buses to S - 100 signals. Provides
designations of various bus systems.

Microprocessor and Microcomputer
Technology, by Noel M. Morris. 255 hardback/paperbakck. Macmillan $£ 15.00 /$ /f5 595 An introduction to the use of logic devices and microcomputers, starting from very simple
description and description and progressing to programming
and application.

Learn Computer Programming with th Commodore VC, by L. R. Carter and E. Huzan. 100 pages
Stoughton, $£ 1.95$.
A short course in the use of Basic on the VIC microcomputer. A number of applications and programs are given, and there are problems
(with answers)

Microelectronics and Microcomputers, by L.
R. Carter and E. Huzan. 232 pages, paperback. R. Carter and E. Huzan. 232 pages, paperback
Hodder and Stoughton, $£ 1.95$. Rather more general than the previous book,
this is intended as in introduction to computin this is intended as an introduction to computing
for the business or scientific user, and for those for the business of scientific user, a
working on industrial control and
working on in
measurement.
The 68000: Principles and Programming, by
The J. Scanlon. 238 pages, paperback. Prentice Hall, \&10.45.
A full description of the 68000 16-bit microprocessor, its capabilities and operation
Many programs are used as illustration in the text.
Microprocessors and Microcomputers, Hardware and Software, by R. J. Tocci and L P. Laskowski, 404 pages, hardback. Prentice-
Hall, 115.70 . Micros introduced in a practical manner. First section is on basics of logic and number
systems; second section deals with computer
architecturee last part is on programming in architecture; last part is on programm
machine code and assembly language.
propagation
${ }_{253}$ Adaptive Array Principles, by J. E. Hudson. The design of adactive aerial arrays, which automatically present nulls in their polar
diagrams to sources of noise. Such arials diagrams to sources of noise. Such aerials are
used in radar, sonar, communications and radio used in radar
monitoring.
Wave Propagation Theory, by J. R. Wait. 348 pages, paperback. Pergamon Press, £22.50.
Primarily on electromate Primarily on electromagnetic wave propagation
in, on or about the earth, but methods described in, on or about the earth, but methods desc.
can also be applied to acoustic waveguides. Aperture Antennas and Diffraction Theory
by E. V. Jull 173 pages Peregrinus, $£ 27.00$
The analysis of radiaing complementary techniques. One is the Fouri
relation relation between aperture field and far-field pattern, giving results for the forward radiation.
Second method is based on diffraction Seconture edge, and can be used for rear and side aperture ed
radiation,
Microstrip Antenna Theory and Design, by J.
R. James, P. S. Hall and C. Wood. 290 pages, R. James, P. S. Hall and C. WWod. 290 pages,
hardback. Peter Peregrinus, $£ 31.00$. hardback. Peter Peregrinus, $\{31.00$.
Design and fabrication of flat plate, 'printed' microwave aerials, with a resume of recent advances and a chapter on trends and possibl
develos developments in in the future. An appendix
compares
VIDEO
Video Handbook, by R. V. Van Wezel, edited Video Handbook, by R. V. Van Wezel, edited
by G. J. King. 403 pages, hardtack. Newnes
Technical Books, £19.90. Technical Books, £19.90.
Television vide
Television, video recording on tape and disc,
audio and tv production, measurements and addio and tv production, measurements
descriptions of some typical commercial equipment. Written for the video amateur an technician, using a practical approach. Includes
information on buiding information on building a monochrome ty

Home Video Yearbook 1982.323 pages,
paperback. Link House, £7.50. paperback. Link House, 7.50.
In three parts. Firstly, hardwar
televisee parts. Firstly, hardware concerned with and suppliers; secondly vhort descripritions of commercially available video tapes; thirdly, lists
of addresses of manufacturers and tape of addresss
suppliers.

WIRELESS WORLD APRIL 1982

DISC DRIVES

Read/write head assemblies involve aerodynamic, mechanical and electro-mechanica techniques and are the most critical aspect of disc-drive design. But an equally importan aspect of the system is how serial data is stored and recalled on a magnetic medium moving at high speed using a single low-mass head. These subjects form this chapter.
 Reluctance of the magnetic circuit depends mainly on the air gap between the head and the disc so the write flux is a function of the flying height. The air gap limits the that of the flying height.
Slippers. Current 'state-of-the-art' slip-
pers fly at less than 20 micro-inches $(0.5$ micron) above the disc. It is obvious that the lower the flying height, the more efficient reading and writing becomes, but what isn't perhaps so obvious is that the major design problem is making the slipper fly low enough. Lift rises rapidly as the separation reduces so to get the head closer to the disc, some of the lift has to be
dumped. Early slippers had two small bleed holes, as shown in Fig. 2(a) to dump ift. These slippers had a flying height of around 100 micro-inches. Figure 2 (b) hows a second generation slipper, with a for flying heights of about 50 microinches. The third example, Fig. 2(c), is designed for use below 20 micro-inches and has substantial bleed grooves and vestigial working surfaces. Although the sur-
face of this slipper appears flat to the naked eye, it is actually formed to a high degree of accuracy in a compound curve.
Suspension. The slipper is mounted at the medium. The force with which the head is pushed toward the disc by the spring is equal to the lift at the flying height for which the head is designed. Because of the spring, the head may rise and fall over
small warps in the disc; it would be virtually impossible to manufacture discs flat enough to allow this feature to be
WIRELESS WORLD APRIL 1982

Fig. 1. An outline of the read/write head in head and is aerodynamically designed so that it flies on the air rotating with the disc.

\square
\square
~
Fig. 2. Three generations of slipper design
The first generation shown at tal the two bleed holes to reduce lift and flew at around 100 micro-inches above the disc. A subsequent design, (b), had a longitudinal
bleed groove and flew at around 50 micro bleed groove and flew at around 50 micro-
inches. This was superseded by the current head, (cl), with substantial bleed grooves or flying heights of less than 20 micro hches. The head shown in (c) has a
compound curve on its working surface compound curve on its working surface
which aids arorodynamics but is invisible to
the naked eye.

FIg. 3. In digital recording the polarity of
the medium, either N-S or he medium, either N-S or S-N, is controlled by the direction of the write are referred to as transitions and determine the read waveform
nance which must be set away from expected way frequencies. Some candievers are fitted with synthetic-rubber damper Other essentials of the cantil head separating ramp, which lifts the head clear of the disc as the positioner retracts, and some receptacle for an adjusting too to align all of the heads to the same
distance from the spindle at a given cylin-
der. Handling and setting head assemblies requires care and skill, in some cases skin acid from a fingerprint is sufficient to etch namic contour.

Encoding techniques

With the exception of some non-interchangeable disc drives, only one head is clerance exists betwen. A prodad lateral position of the head gap and the ideal, and his dimension may be several wavelengths generally possible to us in disc drives. This constraint largely defines the encoding techniques used. As in all modern digital recording, the nedium has only two states of magnetiza-
ion, N -S and $\mathrm{S}-\mathrm{N}$. Devices have been made using the unmagnetized state, but these must be considered obsolete. The write process consists of supplying sufficient current to almost saturate the mer. No erase process is necessary, as writing to saturation will erase a previous recording. Some heads do, however, have erase poles, the use of which will be de-
tailed. tailed.
The out
The output voltage from a read head is proportional to the rate of change of flux, hence an output pulse will only be obtained at the point where the write current changes direction, i.e. at a transition. Figure 3 shows that the pulses alternate in of the cylinder address, as the relative speed of the outer cylinders is higher. Data to be written enters the write circuitry as serial binary with a separate clock. Encoding consists of merging these
wo signals into one channel in such a way that they can be subsequently separated. Perhaps the simplest form of encoding is to everse the write current every time the data is a binary one. It can be seen from Fig. 4 (a) that this approach is of no use in
single channel, as when successive zeros occur, it is not possible to reconstitute the clock.

Figure 4 also introduces the concept of he 'bit cell', i.e. the time taken to record one bit. In a simple encoding system, there must be at least one transition per bit cel popular encoding technique, where each bit cell begins with a clock transition, and may or may not contain a further transiion, depending on whether the data bit is a one or a zero. As the presence of the frequency, the technique is known variously as f.m. or double-frequency recording. Data separation can be very simple, provided the signal-to-noise ratio is adequately high. The signal-to-noise
ratio is determined not only by intrinsic medium noise and the electromagnetic en vironment, but also by the accuracy of the positioner. Consider the example in Fig. 5(a). Originally, data is written along path
A, but positioner inaccuracy means that A, but positioner inaccuracy means that
new data is being written along path B. Subsequently a read may take place along path C, where it will be seen that the read signal is degraded by the previous recording. The solution to this problem is to incorporate two erase gaps in the head,
which erase a small area either side of the new data after writing. In Fig. 5(b) it can be seen that this process protects the data with a margin of undirectionally magnetized oxide. The process is called 'tunnel erase or 'side trim', and is generally em positioners. Such devices usually have low recording densities and accordingly a generous flying height, giving them the advantage that they can be used reliably in envi considered unsuitable.
F.m. is easy to decode, but it is also fairly extravagant with transitions. An encoding method in which the number o transitions per data bit can be reduced ha flying height, and hence a given minimum wavelength, a greater data density is pos sible.
In the next generation of read electron ics, it is possible to relax constraints on the
clock information through phase-lockedloop techniques. With this approach, it is acceptable for a bit cell to contain eithe clock information or data but both are no necessary. The read clock comes from transition at clock time, and which corrects its own frequency by continuously comparing its own phase with that of data
or clock transitions. In Fig. 4(c) it can be seen that the write current is reversed at he bit-cell centre for a one, and that the reversing the write current at the bit-cell boundary. It is interesting to compare the number of transitions required with the example of Fig. 4(b). On reading the data,

Fig. 4. Three data-recording methods compared. At (a), n.r.z. 1 (modified non-
return-to-zero) information is of little use on single-track recording apparatus as clock information cannot be carried. In '.m.'.' recording, (b), a clock transition is
always present at the bit-cell boundary. The presence of a data ' 1 ' causes an extra transition at the bit-cell centre. In m.f.m. recording, shown at (c), a data ' '1' causes a
transition at the bit-cell centre but the only other transitions are at the bit-cell boundaries between successive zeros.
Both types of transition are used to synchronize a p.III. which opens a 'data window' at the bit-cell centre through which only data ' 1 ' pulses are read.

Fig. 5. In (a), track 8 has been written over
track A, but through wide tol positioner repeatability, some of the original data remains at the edge of path B.
If the new data is read while the head If the new data is read while the hea
travels the same path it did when the original data was written, remaining original data will be read together with the
new data, hence the signal-to-noise ratio new data, hence the signal-to-noise ratio
will be degraded. At (b), the problem is. solved by including two erase heads, one solved by including two erase heads, one
at either side of the write head, so that wherever data is written, any original data
at either side of the track will be erased.
the p.l.o. can be used to open a time window' at the centre of the bit cell, so that
only transitions corresponding to a binary only transitions corresponding to a binary
one can pass through. Obviously, the one can pass through. Obviously, the hized, so a series of zeros, or preamble, is used before each block to allow the loop to lock. A unique synchronizing pattern delineates where actual data begins. This phase-locked data-recovery technique is
used with modified-frequency modulation used with modified-frequency modulation
encoding (or Miller encoding) and allows the arrival time of read pulses to be predicted, and therefore noise pulses to be ejected. This means that a smaller s-to-n atio can be tolerated than with f.m. en dispensed with. In any case, drives em ploying the m.f.m. technique are likely to have more accurate positioners.
Where f.m. requires signal-to-noise ratio, m.f.m. requires minimum phase er not to be upset. In Fig. 6, a head is depicted reading closely packed transitions. Owing to the airgap between the head and the medium, pulses generated tend to run peak positions do not correspond to the actual position of the transitions. The phenomenon is referred to as peak-shift distortion, and is overcome by introducing opposing timing changes during the write

WIRELESS WORLD APRIL 1982

tion, artificially advances transitions subject to delay on reading, and delays sample of (usually) four data bits, and decoding the patterns to generate different clock times in a tapped delay line. M.f.m. requires a running sample, so the two
processes are sometimes combined in one circuit.

Recently, a different approach to high density recording has been developed. Central to this approach is that transitions are not permitted at successive active edges
of the write clock. Figure 7 (a) shows that he four combinations of any two data bits may be expressed as three-bit codes which do not contain successive 'ones'. There are, however, four combinations of adjacent. pairs of bits to violate the rule, Fig.
(b). In these cases, the six bits are substituted by alternative bit patterns which must follow certain conditions; firstly, that he substitution contains no adjacent ones, secondly that the substitution ends in a the rule, and thirdly the position of the ones is chosen to generate transitions at sequential integer multiples of the writeclock period. Fig. 7(c) shows that the highest recorded density results from a data
stream of 0011 's, and that this requires only six transitions for eight data bits. At maximum density, m.f.m. requires one ransition per bit, so the relative efficiency $8 / 6$ or 33% greater. Fig . 7 (c) also shows s below the maximum, and that seven even steps exist in the periods between any two transitions. This evenness allows ffective phase-locked noise rejection to be mployed, as the anrival ume or readback pulses can be accurately predicted. In quired when changing to and from the highest density, as at all lower densities the transitions are far enough apart to make peak-shift distortion insignificant. This recording technique is known as $2 / 3$
(pronounced "two three") for obvious reasons. It is difficult to imagine a method
-
A modern head assembly. This type of
head is designed to fly at around 50 microhead is designed to fly
inches above the disc.
which would achieve a significant im provement in efficiency over it. Encoding is performed by a p.r.o.m. which takes in a
running sample of data in the same way as m.f.m. Similarly, reading requires phaselocked circuitry, with a further p.r.o.m.
containing the reverse truth table to the encoding p.r.o.m.

Circuits

The same head is used for both reading and writing, and as stated, usually only
one head is active at one time. The circuits involved in reading, writing and head selection come together at the read/write matrix where the flexible head cables plug in. It can be seen from Fig. 8 that the centre-tapped heads are isolated by
connecting the centre tap to a negative connecting the centre tap to a negative
voltage, which reverse-biases the matrix diodes. The centre tap of the selected head is made positive. When reading, a small current flows through both halves of the head coil, as the diodes are forward biased.
Opposing currents in the head cancel, but read signals resulting from flux transitions on the disc can pass through the forwardbiased diodes to become differential waveforms on the matrix bus. During a write, alternately through the two halves of the head coil. Further isolation is necessary to prevent write-current voltages destroying the read amplifier inputs.
Write-current programming. The flying
height changes as a function of relative height changes as a function of relative
velocity which is governed by the track radius. It is possible to program the write current from the current cylinder-address register such that the write flux remains essentially constant, despite changes in
flying height. The number of write-current steps is usually between two and eight across the working surface of the disc, although some drives dispense with write current programming altogether. In Fig. 9 , the write current is generated by holding the base of a transistor at a temand by selecting different emitter resistors
with transistor switches. As the current source is usually at about -40 V , th switches are fed from the drive logi
through level shifters. The write current directed through the head by a pair of transistors in series with the current gener ator, which are driven in a complementary
fashion by a bistable. The purpose of write

Flexible Pigtail

Fig. 7 (a). Two bits can be expressed as
three code bits without successive transitions. In (b), adjacent pairs can brea the encooing rule and in these cases,
substitutions are made. Write current waveforms for seven different data streams using $2 / 3$ encoding are shown at
(c). The time steps between transitions are uniform, allowing phase-locked data recovery in the presence of noise. A maximum of six transitions are required
for eight data bits; when compared with for eight data bits; when compared with
m.f.m. encoding, this gives a saving of m.f.m. encoding, this gives a saving of
33%.
(a)

(c)

fig. 10 (a). A simplified delay-line peak detector, and associated waveforms (b). A differential phase-lead peak detector is
encoding is to decide at what time to clock the bistable so that a transition is written by the current reversal.
Reading. When not actually writing, the write-current generator is turned off and he write-isolation diodes are revers biased. The read isolation gate is enabled, allowing the differential read signal int he read linear amplifier. This amplifie onstant level suitable for data recovery and filters out unwanted signals. To this end the linear amplifier often contain oth bandpass filters and an a.g.c.c. loop. In ome cases, the linear amplifier's input an the address mark to stabilize the gain in the shortest possible time after entering a block. The address mark is a short section of the track preceding a data block and contains no transitions. A.g.c. squelch is
released as the block is entered, and the linear-amplifier gain reduces from maximum using the fast attack slope of the forward-biased signal rectifier
The constant-amplitude read signal now passes to the peak detector, as the positio
of the signal peaks corresponds to the position of the transitions on the disc. In Fig 10(a) an analogue waveform is compared with a delayed version of itself. The comparator changes state at the signal peak. A differential version of this type of peak
detector is shown in ciple holds equally well if one signal is phase advanced, and thus the delay is sometimes substituted by the RC networ shown.
The detected signal is fed to an appro nal into data separator, which splits the sig to the deserand clock information to pass words.
To be continued

16-CHANNEL DATA ACQUISITION SYSTEM

A 41/2-digit, 16-channel data acquisition system (d.a.s.) is described which functions as a talker-listener on the IEEE-488 bus (GPIB). It uses a $41 / 2 / 51 / 2$-digit a to-d subsystem, AD7555, with $\pm 1.9999 \mathrm{~V}$ full scale, as an easy interface with the Fairchild 96LS488 GPIB circuit.

Figure 1 shows a block diagram of the GPIB 16 -channel data acquisition system. The 96LS488 connects directly to the IEEE bus and controls all the other sec-
tions. (For clarity, a number of the control tions. (For clarity, a number of the control
signals have been omitted.) A set of eight transceivers determines the flow of information (talking or listening) and the 'listen decode' circuitry sends the appropriate address to the 16 -channel
multiplexer. On selection of channel, nultiplexer. On selection of a channel, a AD7555 a-to-d converter.
When conversion is complete, a service request is transmitted to the 96LS488, which in turn interrupts the IEEE bus: the bus can then interrogate the device for
status or data information. Status information includes the last channel selected and the conversion status, while data information consists of a $41 / 2$-digit b,c.d.-encoded epresentation of the alalogue voltage.

The IEEE bus in brief

A full description and specification of the ocument "IEEE Standard Interface for Programmable Instrumentation", IEE Std 488(1978), which should be referred to for fuller explanation.
GPIB communication lines consist of five control lines and eight ground lines, as shown in Fig. $\frac{2}{\mathrm{DB}}$ (the IEEE connector). Data lines (D1-D8) contain the bidirectiosignals.
Handshakes. $\overline{\mathrm{NRFD}}, \overline{\mathrm{DAV}}$ and $\overline{\mathrm{NDAC}}$ are the three bidirectional handshake signals. $\overline{\text { DAV }}$ (Data Valid) is pulled low by a talker when the data hias been placed on the bus, which tells the listener that the
data is valid. NRFD (Not ready for data) is brought high (or released) by each instrument on the bus: when all the instruments have released it, it acts as an indication to he talker that a data transfer can begin. by the device receiving the data, a low indicating that the data has not been captured and a high that this has been done. A simplified data transfer sequence is shown in Fig. 3.
A timing sequence starts when the lis-
tener brings NRFD high (1), saying it is ready to receive the data. The talker places he data on the bus (2), allows it to settle and brings DAV low (3), telling the listener that the data is valid. The listener
brings NRFD low (4), indicating that it is not ready for another data transfer until WIRELESS WORLD APRIL 1982

by Pat Hickey

this transfer is completed. When the data has been processed, the listener brings NDAC high (5), saying that it has received $\frac{\text { the data. The listener responds by taking }}{\mathrm{DAV}}$ high (6) (data is no longer valid) and removing the data from the bus (7). The listener brings NDAC low (8), acknowledging this, and NRFD high (9), indicating that it is ready for the next data byte. The timing of this sequence is not
discussed here, since the 96LS488 IEEEinterface circuit takes complete control of the procedure.
Control. The five control lines are $\overline{\mathrm{ATN}}$, IFC, REN, $\overline{\text { SRQ, and EOI. The ATN }}$ Attention) is asserted only by the control-
ler and, when low, indicates that information on the line is address or control information: it is high when data is being transferred. The IFC (Interface Clear) line s asserted low by controller to reset all $\overline{\text { GPIB devices. }}$
REN (Remote Enable) allows local (i.e.
front panel) control of devices if it is allowed to become high. When low it en$\overline{S R Q}$ that the controlier is in command. SRQ (Service Request) is forced low by a to indicate to

Analog Devices, Limerick, Ireland
the controller that it needs service. EO (End or Identify) can be pulled low by a talker to signify the last byte in a multibyte transfer.
care of by the 96 LS 448 . -

96LS488 GPIB circuit
Figure 4 shows a block diagram for the $96 L S 488$, and the following description
should be referred bot (full circuit diagram). CP is a 10 MHz clock which controls all internal timing, and can be generated using a 150Ω resistor and 150 pF capacitor connected to an internal Schmitt trigger
Transmit Ready) signatus and TXRDY ferring data from the AD7555 a-to-d converter to the 96LS488, as shown in Fig. 5. When the d.a.s. is requested to transfer information to the IEEE bus controller,
the 96 LS 488 checks that TXRDY is high (meaning a byte is waiting). If it is high, the 96LS488 will read the data and bring TXST high (1), indicating that it has the information. TXRDY is then brought low (2), acknowledging this fact and TXST is is ready (4), the AD7555 brings TXRDY high (5) and the sequence is repeated. RXST (Receive Status) and RXRDY

Table 1. Contents of IC_{6} r.o.m. for decoding ASCII information to binary.

R.o.m. inputs (addresses)						R.o.m. outputs (data)					
A 4	A 3	A 2	A 1	A 0		06	05	04	03	02	01
0	0	0	0	0		1	1	1	1	1	1
0	0	0	0	1	"A" (0100 0001)	1	1	1	0	1	0
0	0	0	1	0	"B" (0100 0010)	1	1	1	0	1	1.
0	0	0	1	1	"C" (0100 0011)	1	1	1	1	0	0
0	0	1	0	0	"D"(0100 0100)	1	1			0	1
0	0	1	0	1	"E"(0100 0101)	1	1	1	1	1	0
0	0	1	1	0	"F" (0100 0110)	1	1	1	1	1	1
0	0	1	1	1		1	1	1		1	1
0	1	0	0	0		1	1	1	1	1	1
0	1	0	0	1		1	1	1	1	1	1
0	1	0	1	0	"*"(0010 1010)	0	1	1	1	1	1
0	1	0	1	1		1	1	1	1	1	1
0	1	1	0	0		1	1	1	1	1	1
0	1	1	0	1	CR (0000 1101)	1	0	1	1	1	1
0	1	1	1	0		1	1	1	1	1	1
0	1	1	1	1		1	1	1	1	1	1
1	0	0	0	0	"0]'(0011 0000)	1	1	0	0	0	0
1	0	0	0	1	"1"(0011 0001)	1	1	0	0	0	1
1	0	0	1	0	"2"(0011 0010)	1	1	0	0	1	0
1	0	0	1	1	"3"(0011 0011)	1	1	0	0	1	1
1	0	1	0	0	"4" (0011 0100)	1	1	0	1	0	0
1	0	1	0	1	"5"(0011 0101)	1	1	0	1	0	1
1	0	1	1	0	"6" (0011 0110)	1	1	0	1	1	0
1	0	1	1	1	"7"(0011 0111)	1	1	0	1	1	1
1	1	0	0	0	"8"(0011 1000)		1	1	0	0	0
1	1	0	0	1	"9"(0011 1001)	1	1	1	0	0	1
1	1	0	1	0		1	1	1	1		1
1	1	0	1	1		1	1	1	1	1	1
1	1	1	0	0		1	1	1	1	1	1
1	1	1	0	1		1	1	1		1	1
1	1	1	1	0		1	1		1	1	1
1	1	1	1	1		1	1	1	1	1	1

ransceivers (MC3441) and are designed eet the IEEE standard 488-1975. Th utput of the 96 LS 488 (IC 3): When it ow, data is transferred to the bus, and transferred from the bus when DRB is high. Switches $\mathrm{S}_{1}-\mathrm{S}_{5}$ are used to select the address of the device. As an example:- Fo S_{2} and S_{1} are closed. (Address $10000=16)$. Switches $S_{6}-S_{9}$ are used to select the operating mode of the 96LS48 the Fairchild data sheet gives more in ormation on this). For a talker//istener on and M3 are low (ie, S_{6} and S_{7} are open, while S_{8} and S_{9} are closed).
Since all information is transmitted in parallel ASCII code, it is necessary to de 32×8 bit m , which is used for this purpose, whose contents are outlined in Table 1. The address latch, IC_{7} (74C175) holds the address of the selected channel, is output being connected to the input

.
Fig. 5. Simplified talking sequence.
84

Data 19615488) RXST196L5488 \qquad
XROY(DAS)
Fig. 6. Simplified listening sequence.
which in turn selects the appropriate analogue signal to the a-to-d converter ogue signal to the a-to-d converter
subsystem (AD7555) IC9. On completion of a conversion, the b.c.d. data is held in internal latches, and can be accessed by control of the DMC pin. The IEEE transmit handshake signals are used to cycle. A data selector IC_{11} (756157) send $41 / 2$ digits and a carriage return to the 96LS488: When $\overline{\mathrm{D} 5}$ is high, b.c.d. data from the a-to-d converter is selected, and The hex. c.m.o.s.-t.t.l. inverter (IC_{1}) generates the 4.096 MHZ clock with the crystal, whilst IC_{16} (7493), a 4-bit binary counter, divides this by four, producing a 1.024 MHz clock for the AD7555. The two multiplexer/selectors (IC ${ }_{23} 24$) are used to transfer either data or status information to the $96 \mathrm{LS488}$. When $\overline{\mathrm{D}} / \mathrm{S}$ is low, data information is selected (T0-T5), and when high the status byte is sent.
The concluding article will continue this
circuit description and include a program circuit description and include a.program
for scanning 16 channels.

EMENTS

3/24/25th March

Metrooptics/Laser International ' 82 UK , at Metropole Convention Centre, Brighton. Cavridy House, Ladymead, Guildford, Surrey

5th March

Computational Techniques in Image London. Details from: The Meetings Officer, The Institute of Physics, 47 Belgrave Square,
London, SWIX 80 X . London, SWIX 8QX.
ETM '82 and Sensors \& Systems ’82 (Electronic Fosting and measurement) at Wythenshawe Forum, Manchester. Details from: Triden Road, Tavistock, Devon PL9 8 AU
30th March/lst April
and Exhibition) at Brighton Merropole, Susse Details from: IPC Exhibitions Ltd, Surrey House, 1 Throwley Way, Sutton, Surrey SM1 4QQ.
4th-7th April
National Asso
National Association of Broadcasters,
Exhibition, at Las Vegas, Nevada USA Exhibition,
6th April
Current R
Current Research in Magnetism, at the
Insitutue of Physics, London. Details fro The Meetings Officer, The Institute of Physi 12th-15th April
Electrostatics Conference, at St Catherine's College, Oxford. Details from: The Meetings Organiser, Insitut
13th-16th April
Balic Electronics for Teachers, at University of Salford. Detaill from: The Administrative
Assistance (Short Courses) Room 110, Registrar's Department, University of Salford Registrar's Depar
Salford M5 4WT.
20th April
Satellite Development in Broadcasting: M. W.
Harman, at Room SG27, Univer Gosta Green, Birmingham at 6.30pm. Details
 WC2R OBS.
International Conference on Video and Data Recording (I.E.R.E.). University of
Southampton, Southampton. Details Conferencte Registrar, IERE, 99 Gower Street, Ondon WCIE 6 AZ .
All Electronics Show, at the Barbican
Exhibition Centre, London.
20th-23rd April
Communications ' 82 , IEE Conference and Exhibition at the National Exhibition Centre, Department, Savoy Hill, London WC2R OBL 2nd April
Harman, at University of Strathclydes: G. W. at 6.30pm. Details from: IEETE, 2 Savoy Hill, London WC2R
23rd-25th April
The Computer Fair, at Earls Court. (Sponsored by Practical Compuring and Your Computer) etails from: Exhibition Manager,
IPC Exhibitions Ltd, Surrey House,
1 Throwley Way, Sutton, Surrev.
28th April
 Conservation, at Hawthorns Hotel, Woodland
Road, Pristol at 7 .30pm. Details from: IEETE Savoy Hill, London WC2R OBS.

WIRELESS WORLD APRIL 198

SYMMETRICAL-OUTPUT DIVIDERS

IExpanding on February's article, the author first shows how further hexadecades may be added to the previously described binary-programmable counter. A basic b.c.d.-programmable counter follows and to conclude, details of how to add further digital signals, and are programmable in integer steps. As frequency-dependent components are not used, the speed of each circuit is only limited by the speeds of the logic devices used.

For dividing in the range $16 \leqslant N \leqslant 256$, whether or not N is a prime number is important. If N is not prime then $N=N_{1}$ N_{2} and the divider can be made using two
programmable divide-by-1-to-16 circuits described in the previous article. These may be connected either asynchronously or synchronously, the latter method being he fastest. To divide synchronously it is necessary to enable the 74 Cl 163 inputs as
shown in Fig. 9. To divide asynchronously, the output of the divide-by- N_{1} circuit has to be connected to the input of the

Fig. 9. Synchronous cascading of programmable divide-by-1-to-16 circuits. H_{0} is the input

Fig 10. Connecting binary adders for a programmable 1 -to-256 divider, applying equations
(5) and (6). Σ_{3} of the most significant decade is not used.
that used for the 1 -to- 16 programmable counter except that the relationships in equations (1), (2) and (3) given in the previous article must be changed to force he counter to oscillate' around the transiequations are:
$L+D=255=2^{8}-1$
$D-I / 2=127$ if I is even
and
and
$-(I+1) / 2=127$ if I is odd
(6) These relationships an (6) mented using two binary adders as shown previously, it is possible to ind the logic relationships between input and load data as follows,
$L_{0}=I_{0} \oplus I_{1}$
$L_{1}=\left(I_{0}+I_{1}\right) \oplus I_{2}$
and so forth up to
$L_{6}=\left(I_{0}+I_{1}+I_{2}+I_{3}+\right.$
$\begin{aligned} L_{7} & =0 \\ D & =\bar{L}\end{aligned}$

B.c.d. programmable counters

If division ratios from one to nine only are required, the previously described binaryprogrammable circuit may be used. If, however, a similar circuit is designed using a decade counter, and the maximum divior range of one to ten is required, the counter will have to "oscillate" at the 4-5
transition, rather than at the $7-8$ transition as was the case with the binary-programmable circuit. This means that as Q_{D} is used as the output, the signal obtained will not be square. In fact, if the dividing ratio all. It is easy to get round this problem by producing a logic 0 for states zero to four and logic 1 for the remainder, but this creates new problems

- more circuits are required
even with a synchronous counter, it is ifficult to avoid spikes on the output, so he clock will have to latch the output signal
- the maximum operating frequency is wered.
So, for division ratios from one to nine, is more practical to use a binary-counter to advantage if division ratios up to 100 , or

[^1]

Fig. 11. Inverters and 9's complementers are used to
apply equation (7) when cascading b.c.d.-input program mable dividers. Each addolitional decade will
require the use of anoth require the use of another 9 's complementer.

- Fig. 13. The two adders, as shown, perform a similar most significant decade ic. by a but by replacing the most significant decade i.c. by a binary type, the
maximum possible division ratio is raised to 160 the m.s.b. may be used to change the input function.

Fig. 14. Sections shown in Figs 11 and 13 circuits to form comparato rand division circuits to form the b.c.d. input
programmable divider for ratios $1 \leqslant 1 \leqslant 100$. Divisors up to 170 may be used with this
circuit and further decades may be aded
even greater, are required. The follow ing describes such dividers for ratio For ratios $1 \leqslant I \leqslant 100$, two divi
connected synchronously and are made to 'oscillate' around a given transition (at p to $p+1$. It should be obvious from the previous paragraph that a binary counter
will still have to be used for the most-significant decade (m.s.d.)
If the output obtained is to be square, and one is to be free to choose a divisio ratio from 1 to 100 , it is necessary to use 799 and 800 if three decades are used) as the starting point
Table 4 gives values for the following relationships;
$L+D=159$
$D-I / 2=79$. if I is even
(7)
(8)
$D-(I+1) / 2=79$ if I is odd
To apply the value 159, a 9 's comple menter must be used in the least-significant decade, and four inverters for the next
decade, Fig. 11. In the original circuit an

MC14561 9's complementer was used. To mplement relationships (8) and (9), $I / 2$ The b.c.d. value is shifted one position to the least significant bit, and a correction is made through the b.c.d. adders when the 1.s.b. of each decade is 1 .

This method works well, but it is pos adders because their design is such th arithmetical operations like $14+P$ ($0 \leqslant P \leqslant 5$), which are not supposed to be valid in b.c.d., are possible and provide the correct result. Consequently, relausing a binary adder (for the m.s.d.), and a b.c.d. adder, as shown in Fig. 13. This circuit may be expanded to suit the desired number of decades. Figure 14 shows the complete circuit, which consists of the
previously mentioned sections with two comparators and the dividers added. As can be seen in Fig. 14, the b.c.d.-input divider differs from the binary-input divider mainly through the inclusion of a b.c.d. adder for processing program-input
data and the 9 's complementer for the counter-load data.
Two other interesting features are inherent in the circuit,

- if the data m.s.b. is held high, the whereas the maximum-possible division

Table 4: Divisor, load and detect (I,L and ounter. This table is not given in full as it is obvious how omitted values are derived
from the values given.

Divisor	Load	Detect
1	79	80
2	79	80
3	78	81
4	78	81
11	74	85
12	74	85
19	70	89
20	70	89
39	60	99
40	60	99
79	40	119
80	40	119
99	30	129
100	30	129

ratio is 160 . Consequently, if a number higher than 160 is programmed, the actual atio will be $N-160$. For example
if the data m. m.s.b. is held low, it is possible to use the full potential of the most significant digit, i.e., the input may ee programmed to give ratios from 1 to 15 . will me from 1 to 160 , the ratio 160 oc will be from 1 to 160 , the ratio 160 ocarring when the balue of the two inpu If three deca
lowing additional components are needed, - a decade counter between the binary arry and enable output connections) - a comparator

- a 9's complementer
- a b.c.d. adder for input data (B inputs f this adder are connected as those of the C.d. adder)
esign and work originally used for the pending on the division ratio. Changing the counters, comparators and gates to 4LS series i.cs will bring the maximum sable frequency up to around 10 MHz
Bibliography
C. F. Chen, Design of a divide-by-N asynchrooous odd number counter with $50 / 50$ duty c cy p. 1278-1279.
J. L. Huertas, Square-wave frequency divider Electronic Design, 21 September 1975 pl00 P. Bamberger, G. Girolami, Méthodes simples pour la division de fréquence symmétrique. 15 October 1978, pp.59-61: A: M. Madni and R. R. Orton, Cross-coupled one shots divide by odd numbers and give a ber 197r9, p. 114. L. E. Getgen, Divide symmetrical clock pulses by odd numbers, get a symmetrical output.
Electronic Design, 1 March 1980 , p. 110 .

ASCII KEYBOARD TESTER

A time-saving method for detecting faulty keys or data lines. Traditionally keyboards have been tested by using a voltmeter or an oscilloscope in conjunction with a table of ASCII codes. This takes a long time and can be prone to error. The tester described here can detect faults quickly and easily.
by Waleed Habib Abdulla
Fig. 1.The keyboard tester in outline

WIRELESS WORLD APRIL 1982

Fig. 2. The full circuit of the keyboard tester.
Figure 1 shows a block diagram of the tester. The ASCII code of each key is stored in an e.p.r.o.m. Which holds an
'image' of the keyboard. When a key is pressed, the coded output may be compared with the stored code from the memory. Any mismatch will cause 1.e.d. indicators to light. A counter is used to adaress the memory and is incremented by Each time a key is pressed, the counter increments to the next address. Thus the keys must be tested in a set sequence governed by the order that they are programmed into the e.p.r.o.m. The full cir-
cuit is shown in Fig. 2. There is an up/down switch to reverse the counter, switches to set a specific address in the memory, a counter disable switch, 'reset' and 'Key test' pushbuttons.
With the counter enabled and reset and
switched to the 'up' mode, it is possible to press all the keys in sequence to check for errors. If no l.e.d. is lit, then the keyboard has no fault. If a l.e.d. should light then the corresponding bit can be tested inside the keyboard. It is possible to back-track
and retest a key by reversing the sequence with the up/down switch. A fault may come from an individual key or from a data ine. In the latter case, the same l.e.d. will remain lit when a number of keys are disabled and the address of the counter is tered on the switches. Pushing the key-test button will effect the comparison. Alternaively, one location in the memory (for Then with the counter set to left vacant., and disabled, the pressing of any key will cause the code coming from that key to be displayed on the 1.e.ds.
88

Fig. 3. A suitable power supply. The voltage needed is + 5 V at 222 mA . The e.p.r.o.m.
requires a negative voltage obetween -5.5 and -9V at 20 mA : Resistor value selected to suit
current rating ofthe current rating of the zener diode.

Writing for Wireless World

Notes for authors

Potential authors often ask us for advice on how to present their material; fearing perhaps, tha
anything of less than a certain grammatical stan dard may be rejected. There is no basis for this belief: any article
which we think contains information which we think contains information of interest
to our readers, or which will add to their store of knowledge, or which presents the design of interesting equipment, is acceptable. We are happy to correct any awkwardnesses of gram-
mar or spelling. All we ask is that articles conmar or spelling. All we ask is that articles con-
tain all the relevant information and include any relevant diagrams or illustrations. Articles
should be original contributions should be original contributions and not just re-
hashed chapters from text books or application hashed chapters from text books or application
notes. There is no need to use a formal tone -a simple direct style makes for pleasant reading.

Diagrams need only be clear sketches, as we re-draw them all to our own style, but they
must be clear so that the must be clear so that the people in our drawing
office can follow and reproduce them. Photographs can be sent as slides, negatives or glossy prints and will be returned, if this is requested. We like to include brief biographical piece
on our authors, preferably with on our authors, preferably with a photograph
you have no objection to this, please let us have
the information yhe information with the article, as well as any
qualifications or honorifics that you may possess. Wess pay for the articles that have been
Wecepted immediately after their publication. acceppted immediately after their publication.
If you would like to talk about a propsed If you would like to talk about a proposed
article, jou may like to ring us on $01-6613500$,
extension 3590 or extension 3590 or 3128 .

WIRELESS WORLD APRIL 1982

NEW PRODUCTS

WAVEFORM RECORDER

Digitial wive form reocrders are ad
new venure for Hewlet Packard

but with their past experience in
test and measuring instruments

 he deep end. The HP5180 is a so
called 'universal' waveform recorder, that is, it can be used on its
own or under the control of comown or under the control of a com-
puter. A 10-bit a.-to-d. converter
roviding sampling rates up to providing sampling rates up to
20 MHz , and a 16 K -by- 10 bit
bit memory that can be divided into a
maximum of 32 segments form part of the system. Digital triggering is used so trigger times before or arter he event, and trigger voltages, may be set and read accurately. One of
the functions of two adjustable cursors is to pin-point a section of a
waveform for vertical andor horiwaveform for vertical and/or hori-
zontal zoom; these cursors may also zontal zoom; these cursors may also
be used to set trigger points. The
and front panel is, of course, designed
regonomically but nevertheless holds some 50 push buttons and ne multi-purpose knob. With this mind, up to four front-panel setngss may be stored and recalled a
will. All the front panel controls, and data $i / 0$, are accessible through he HP-interface bus and 16 -bit ccess) at transfer rates of up to 1 M -word/s is possible. Hewlett-
Packard Ltd, $308-314$ Kings Road, Packard Ltd, 308-314 King Reading,
ELECTROMETER
ce and charge functions are included on Keithley's model 614 electrometer. On the three measuring ranges for
up to 20 V direct, the $41 / 2$-digit meters input, impedance is $5 \times 10^{13} \mathrm{~S}$ and 20 pF ; resolution on the lowest range is $10 \mu \mathrm{~V}$. The most
sensitive of nine direct-current

routine servicing. The more elabo rate of these contains 25 tools, in de-solder minature soldering iron,
dions,
cutters, tweezers, a knife, an extraction tweerers, a a knife, an i.c.
strippers, and a range of screwdrive stripper and a range of screwdrivers
and adjusting tools. Seven tools are and adjusting tools. Seven tools are
contained in the smaller kit, pliers, side-cutters, tweezers and four screwdrivers. The former, the
computer-service wallet, sells at computer-service wallet, sells at
$£ 39.50$ including v.a.t. and postage, and the latter, the 'micro Toolmail Ltd, Parkwood Industrial Estate, Sutton Road, Maidstone, Kent ME15 9LZ

BEAD
THERMISTORS
fften, thermal and voltage/curren oven, hermal and voltage/currens
overoads in transformers, chokes,
notors, generators, etc., are sensed motors, generators, etc.,., are sensed
by means of a p.t.c. thermistor. For by means of a p.t.c., thermistor. For
this application, the response speed this application, the response speed
of a protection circuit is mainly de-
termined by the size of the thermis tor and the thickness of its prote tive coating. Compstock have
range of general-purpose bead ther
mistors which range of general-purpose bead thi
mistors which all have a nomina resistance of $1 \mathrm{k} \Omega$ at one of 13 tem
peratures from $80^{\circ} \mathrm{C}$ to $180^{\circ} \mathrm{C}$ and peratures from $80^{\circ} \mathrm{C}$ to $180^{\circ} \mathrm{C}$, an each can be obtained as a bare pel
let, resin dipped, sleeved or both
resin dipped and sleeved For resin dipped and sleeved. For all 13
reference reference temperatures, $-5{ }^{\circ} \mathrm{C}$ re
duces the resistance to
duns and
$5^{\circ} \mathrm{C}$ increases the resistance $+5^{\circ} \mathrm{C}$ increases the resistance to
$1.3 \mathrm{k} \Omega$. Compstock Electronics 1.3k Ω. Compstock Electronics
Ltd, Compstock House, London Road, Stanford-le-Hope, Esse SS170 OUU.
WW304.

VOICE FILTERS Active voice-frequency filters
use in telecommunications are
availa available from Barr and Stroud There are currently four modules the EF117, $118,118 \mathrm{~A}$ and 119, a with ellipuc--ype transer function
providing rate of 40 dB . The 117 is a band pass filter for the range 300 Hz to
3.4 kHz ; attenuation variation be tween 350 Hz a and 3.0 kHz is les
than $\pm 0.5 \mathrm{~dB}$. Both versions of the

WIRELESS WORLD APRIL 198

NEW PRODUCTS

Firktimeonsirth.
 -

 Sharp bring you the MZ80B

Amachine that offers you functio powerful, more expensive computers; the gives you versatility to handle a huge range
of software and hardware applications in f software and hardware applications in cientific, business and personal use. graphic display potential; more flexible data torage and retrieval, and ease of operation Here is the computer from the futur vailable today.

Stunning Eraphic Display.

Seeing is believing. The large-screen, high-focus, green-face display incorporated in the MZ8OB gives you high resolution graphics of 320×200 dots.
An additional graphic RAM can be added which allows another 320×200 do
esolution pattern to be displayed.
ability is especially useful for simulating and
abiity is especialy userul for simulating gand
displaying a dynamic picture. It can display displayying a dynamic picture. It can display
40 characters $\times 25$ lines or 80 characters $\times 25$ lines via software switching.
In addiditon there are facilities for fult scrolling and a full range of graphic symbol

Character and Graphic Printer:

This fast, quiet printer will reproduce our graphic displays and, of course, print symbols. A tractor/friction feed version

Data Storage/retrieual

 The MZ8OB has a remarkablememory. 64K of RAM. And that constitute all the memory area, giving flexible storage of any computer language and its software The cassette deck is electromagnetically-
controlled, with a data transfer speed of $1800 \mathrm{bits} / \mathrm{sec}$ combined with a unique
facility to make data storage
and retrieval super-fast.

A typewriter-style keyboard
numeric key-pad and ten user-definable keys for fast and simple operation.
BASIC is, of course, provided with
ASIC compiler.
Floppy Disk Drive.
A twin Floppy Disk Drive unit can be storage on double-sided double-density

Comprehensive Dacumentation.
Each MZ8OB comes complete with a flll set of documentation including an owners' manual giving full circuit diagram
a monitor reference manual and programming manuals.
interfuces
RS-232C and IEEE Interfaces are available from January 1982 allowing the instruments and otherpere with scientific

CP/ $111^{+2} 2$

CP/M* is also available making a
wide range of packages immediately avail able including wordprocessing, financial modelling, data base management to
mention but a few. $C P / M^{*}$ also increases the disk capacity to 680 K .

SHARP 7irst, and foremost

 HARPEEECTRONICS (UK) LTPD, COMPUTERDIVISIOSHARP HOUSE THORPRD, NEWTONHEATH MANCHESTER M1098E TELEPHONE: O61-200 2333

Whyon Gurthdon't you find outmore?

| Name
$\left.\right|^{\text {Address }}$

Tel:
To: Sharp Electronics (UK) Ltd. Computer Division,
Sharp House, ThoraRRoad, Newton Heath
Mana

THE W.W. DISK OFFER

We have obtained a limited stock of European single sided mini floppy drives so please get orders in soon
Circle the enquiry number for data
Total U.K. price including VAT at 15% and carriage, CWO

ONLY £155 EACH INCLUSIVE
(Drive $£ 132, \mathbf{P}$ and $\mathbf{P} £ 2.78$, VAT $£ 20.22$)
Please make cheques and P.O.s payable to
W.W. Disk Offer and send to
W.W. DISK OFFER

49 Milford Hill
Batford
Herts
Please call 0582-429122 to check on availability before ordering
Allow 21 days for delivery. This offer applies to U.K. orders send SAE for quotation

Also a few double sided $8^{\prime \prime}$ drives of the same manufacture. Check for availability, c.w.o. price:
$£ 395+£ 5$ carriage + VAT giving a total of c.w.o $£ 395+£ 5$ carriage + VAT giving a total of c.w.o.

W - 088 FOR FURTHER DETALL

WIRELESS WORLD APRIL 1982

94
WW - 049 FOR FURTHER DETAILS

FOTOLAK

ELECTRON GUNS TV TUBE COMPONENTS

Please request our current catalogues and Data Information.

- Griftronic 2 gimus matir

A EMISSION LTD WARTCRSHIRE B49 5DP Telephone: (0789) 764852/764100 Telex: 312354 Grifem G WW - 030 FOR FURTHER DETAILS

WIRELESS WORLD APRIL 1982
U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

RADIO COMPONENT SPECIALISTS
337 WHITEHORSEROADO. CROTVON

VIDEOTEX SYSTEMS'82 CONFERENCE

Cunard International Hotel
Hammersmith, London W6
May 5,6,7, 1982

> This important two day conference will cover in depth, both technical and marketing aspects of videotex technology. Presentations will be made by experts, drawn from the industry's leading equipment manufacturers, system operatos and users. Subjects include: Day One - The politics . Gateway - Direct transfer • Hardware and Software compatability - International networks. Day Two - Marketing the, product Economics - Umbrevll services . The Canadian experience P Private systems • The next ten Speakers include: John Wakeham, MP, John Durham, Alan Haimes, David Gilbert, Ken Knight, Ted Sedman, JDöng, Murray Cook, Tony Book, Jenny Clayton, Tim Chapman, Colin Tipping, Geoff Hutt, Andrew Lighting, Anthony Harris, James Smith, John Marsh, Chris Singer, Mike Aston and Malcolm Smith. Conference organised on behalf of AVIP The Association of Viewdata Information Providers Limited.

Run in parallel with RUnin paral ' 82 EXHIBITION VIDEOTEX SYSTEMS : 2 EXH May 5-7 Cunard International Hotel May $5-7$

\section*{| Full details from: Sue Bonnell. |
| :--- |
| IPC Conferences Ltd. Surrey House. |
| Throwley Way. Sutton. Surrey SM1 4QQ. |
| Tel: 6438040 Ext. 4889 and 4891 |
| Please send details about Videotex Systems 82 |
| conference/exhibition to: |
| Name |
| Company |
| Address |}

WIRELESS WORLD APRIL 1882

Digital Accuracy Effortless Convenience:

Tp to 50 Teminate and measure FF Power
unatrs from AM and FM
 Three models cover $1-10 \mathrm{~kW}, 1-2.2 \mathrm{~kW}$ and $1-5 \mathrm{kWW}$ ranges with calorimetric
accuracy of $\pm 21 / 2 \%$ of indication (above 5 kW) Self-cooled MODUNOAD Termination assures low SWR in $50-\mathrm{ohm}$ lines
can be permanenty mounted can be permanently mounted - or
wheeled in place on dolly wheeled in place on dolly. To measuru epower, push a button,
wait briffly to stabilize, zero the display
and apply FF ! Can be used to calibrate or check other
meters.
Bulletin. Askiled for it

Aspen Electronics Limited your exclusive u.k.representative 2/3 Kildare Close, Eastcote, Ruislip, Middlesex HA4 9UR Telephone: 01-8681188
Telex: 8812727 FAX: 01-866 6596
wW - 075 FOR FURTHER DETAILS

PRINTED CIRCUITS

FOR WIRELESS WORLD PROJECTS
 ww - 009 FOR FURTHER DETALLS

WIRELESS WORLD APRIL 1982

RHODE \& SCHWARZ Selective UHF V/ Meter. Bands 4 \& 5 . USVF Selectomat Voltmeter USWV £450. UHF Signal Generator SCH $£ 175$. XUD Decade Synthesizer \& Exciter POLYSKOPS SWOB I and II Modulator/ Demodulator BN 17950 / 2	P. F. RALFE ELECTRONICS 10 CHAPEL STREET, LONDON, NW1 TEL: 01-723 8753	DC POWER SUPPLIES
MARCON		SPECIAL PURCHASE LAMBDA POWER SUPPLIES
TF995B/2 AM/FM Signal Generato		
		ite
TF1 101 RC oscillators $£ 65$.655.1 SAUNDERS. $1400-1700 \mathrm{MHz}$. FM TF1066B/1, $10-470 \mathrm{MHz}$. AM /FM TF1 152A $/ 1$. Power meter. $25 \mathrm{~W}, 500 \mathrm{MHz}$ E50.	RANK KALEE 1742 Wow \& Flutter Meter. AIRMEC 314A Voltmeter. 300 mV (FSD)-300V.	
	AIRMEC DERRITRON 1 KW Power Amplifier with control equipment	
t50. TF1370A RC Oscillator $£ 135$. FF7910 Carrier Deviation Meter	for vibration testing, etc. TELONIC type 12040 O-500MHz sweep generator TELONIC type 121 Display scopes THLONIC tye 101 Display scopes. WAYNE KERR AF signal generator RADIOMETER Distortion Meter BKF6 $£ 125$. 	
BEECKMAN TUR̈NS COUNTER DIALS Miniature type (22mm diam.). Counting upto 15 turn "Helipots". Brand new with to 15 turn "Helipots". Brand new wittmounting instructions. Only 2.50 each. mounting		
		VAARIABLE VOLTAGE BENCH SUPPLES use. Constant voltage, variable 0.30 BV output at 1 A . Cased, fres standing, volt-metered output. Shortcircuit proot. Size $4 \times 5 \times 7^{\prime \prime}$. Only E30-each (pp
	AL PURCHASE OF TEK PORTABLE OSCILLOSC	
	Tektronix 454 DC-150MHz dual-beam oscilloscopes in stock now. $5 \mathrm{mV} / \mathrm{cm}$ Y-amCalibrated sweep delay. We can offer these units in first-class operational condi-tion complete with three months' guarantee, for a once only price of $£ 850$. Full specification sheet upon request	
MARCONI Video/Audio mixing desks. Monochrome Video cameras complete with on-board monitors. Video monitors types CONRAC II (9" tube) PROWEST $13^{\prime \prime}$. To be sold in first-class working condition. Offers invited for complete lot.		
	TEKTRONIX ${ }^{\text {OSCILLOSCOPES }} \stackrel{\star}{\star}$ SERIES SCOPES AT BARGAIN PRICES: All in good working order. Available to callers only 	
SEALED LEAD ACID BATH Gould GELYTE type PB660. 6V. 6A.H. Measuras 175p post).		
	carefull teted in our workshop and recenditione where neecssary. it is sold in first-class operational condition and most items carry a three months guarantee. For our mail order customers wehave a money-back scheme. Repairs and sevvicing to all equipment have a monev-back scheme. Repairs and servicing to all equipat very reasonable rates. PLEASE ADD 15% SAT TO ALL PRICES.	
20-WAY JACK SOCKET STRIPS. 3 pole type $£ 2.50$ each (+25 p p.p.). Type 316 three-pole plugs for above-20p ea. (p.p. free).		00V

FRNTHPR GRAPHills

What's going on in Computer Aided Design - and how will it develop? Ever wondered about the maths behind
interactive 3-D graphics? Want to know about the interactive 3-D graphics? Want to know about the
graphics capabilities of the powerful Hewlett Packard HP-83?
Our April issue examines three aspects of
graphics in computing. We review
Gandstand, a game for gamblers microprocessor control has come to the farm.. That's just a sample of Practical Computing, together with of Pet, Apple, Tandy and Sinclair ZX 80/81 computers. Buy Britain's leading personal computer
magazine.

APRIL ISSUE OUT NOW. 80p AT YOUR NEWSAGENT'S - BUT HURRY.

CHILTERN ELECTRONICS BRAND NEW SURPLUS DISK DRIVES

Due to bulk purchase of bankrut stock, we are able to offier thase Fioppy and Hard

 \star DRI SERIES 7200 LLOPPY DISK DRIVES

OTHER COMPUTER BARGANS

WW-065 FOR FURTHER DETALLS
WRONG TIME?
MSF CLOCK is ALWAYS CORRECT - never gains or
$\begin{aligned} & \text { loses, SELF SETTING at switch-on, } 8 \text { digits show Date, } \\ & \text { Hours, Minutes and Seconds, auto GMT/BST and leap }\end{aligned}$
$\begin{aligned} & \text { Year, can expand to Years, Months, Weekdays and } \\ & \text { Milliseconds, also parallel BCD output for computer or }\end{aligned}$
$\begin{aligned} & \text { alarm, etc., receives Rugby } 60 \mathrm{KHz} \text { atomic time signals, } \\ & \text { built-in antena, }\end{aligned}$
V.LF.7 EXPLORE with a $10-150 \mathrm{KHz}$ Receiver, $£ 16.50$.
$\begin{aligned} & \text { V.L.R. EXPLORE with a } 10-150 \mathrm{KHz} \text { Receiver, } 161.50 \text {. } \\ & \text { 6KKHZ RUGBY RECEIVER, as in MSF Clock, serial data }\end{aligned}$
$\begin{aligned} & \text { output for computer, etc., decoding details, } f 17.90 \text {.es all } \\ & \text { Each fun-to-build kit (ready made to order) includes all }\end{aligned}$
$\begin{aligned} & \text { parts, printed circuit, case, postage otw., instructions, } \\ & \text { money back assurance so GET yours NOW. }\end{aligned}$
CAMBRIDGE KITS
45 (WD) Old School Lane, Milton, Cambridge. Tel: 860150

STEPPING MOTOR ROTARY TABLE

MICRO-PROCESSOR CONTROLLED

Sepping motor driven rotary table machined from cast aluminium parts, uble diamect

F.H. PRECISION ENGINEERS
${ }_{24} \begin{gathered}\text { Belvoir Avenue, Trentham, SNGINE-0n-TrS } \\ \text { Tren. } 0782-643278 \text { (Ansaphone) }\end{gathered}$ ST4 8 SY

Practical Comphting

WIRELESS WORLD APRIL 1982

WHYANIP OSTY POW:RAMP?

MOSFE Ultra-fi, with healsinks

MOSEET Ultra-Fiwithout heatsinks

LINSLEY-HOOD CASSETTE RECORDER 1

PRACTICAL WIRELESS 'WINTON' TUNER

 Instant easy ordering, telephone your
requirements and credit card number to us on
Oswestry (0691) 2894

AMATEUR RADIO HANDBOOK 1982 by A.R.R.L.

30-hour Basic by Prigmore
UCSD Pascal Handbook by Clark
Electronic Equipment Reliability by Cluley
Micros in Amateur Radio by Kasser
How to Design, Build Remote Control Devices by Stearne Modern Communication Switching Systems by Hobbs
£8.00
Art of lectronics Sy Horowitz
\star PRICES INCLUDE POSTAGE AND PACKING \star
THE MODER BOOK CO
PHONE: ${ }^{151 / 21 \text { Praed Street, London, W2 } 1 \text { NP }}$ NP 1 p.m
-
WW - 062 FOR FURTHER DETAILS

FEED YOUR MICRO BYTES WITH OUR

HART TRIPLE-PURPOSE TEST CASSETTE TC1

in view of the extremely rapid change taking PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTIties of components become redundant. we are CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, N. Finchley, London, N.12.5 mins. from Tally Ho corner.
Telephone 445 2713/0749
\qquad
WW - 066 FOR FURTHER DETALLS
WIRELESS WORLD APRIL 1982
£100 COMPUTER

ONLY

£99.95
Plus FREE MiCROL Professional Programming Pack (RRP £g.95) Or we will beat any Iower odvertised prite by 5\%

 FA-2 Cassette Adaptor 19.95 ; FP-10 Printer $£ 44.95$; NP-4M Rechargeable
Battery Pack $E 6.90$; AD-4150 Mains Adaptor $£ 5$.

 $\begin{array}{r}\text { f99.95 } \\ \text { f139.95 } \\ \text { f179.95 } \\ \hline\end{array}$
MiCROL PROCOS for PROFESSIONAL USERS

 systems teature easynto-use commands and suport PP-10 print options
Brochure on request.
MicRoLPROCOS (A+B) Price $£ 24.95$
SENSATION
of the Japanese Music Fair

$$
\begin{aligned}
& \text { CASIOTONE 701 COMPUTERISED ORGAN } \\
& \text { Fully Programmable, } 5 \text { octave, Polyphonic Keyboard }
\end{aligned}
$$

$$
\begin{aligned}
& \text { even the most proficient musician." Keyboards \& Music Playe }
\end{aligned}
$$ ww - 086 FOR FURTHER DETALLS

LOTSOFAWILP EMCAPSTLIF i i $=1$ 隹 coupal: $=$ WH ALIPRODOLS

CX80 colour

 MATRIX PRINTER New low priceAt last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.
Dot Addressable +15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options. Apple II interface gives dot for dot colour dump. New viewdata interface prints out two pages side by side in full colour. See Prestel 200650.
The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.
ITTEGREK LIMITED
Portwood Industrial Estate, Church Gresley Burton-on-Irent, Stafts DE11 9PT
Burton-on-Trent (0283) 215432. Telex: 377106

\section*{| POWNER SUPPPLIES | | | |
| :--- | :--- | :---: | :---: |
| HIGH OUALITY COMBINATION SSWITCH MODE AND STATIC | | | |
| POWWR SUPPLIES | | | |}

ANY MAKE-UP OR COPY QUERIES CONTACT BRIAN BANNISTER 01-661 3500 extension 3561

Audio power meter

Wide range:

* 30 Hz to 30 k Hz *10رW to 50W
* 1 -2 to $1000 \Omega \quad$ * mains/battery
$*$ decibel scale -18 dBm to +47 dBm

MIXERSFADERS VUWGIER DRIVERS ATDMOREALCEWFROMILP!

WIRELESS WORLD APRIL 1982

Practical Computing and Your Computer present...

Porsonal computers
Home computing
small business systoms
April 23-25, 1982
Earls Court,
London
Friday \& Saturday: $10 \mathrm{am}-6 \mathrm{pm}$
Sunday: $\quad 10 \mathrm{am}-5 \mathrm{pm}$
Sunday:
Admission $£ 2.00$ adults $£ 1.00$ children under 16 .

At The Computer Fair you can see and compare an enormous range of personal and home computers. Find out what they can do and which one would suit you best. Talk to the experts and discover for yourself how much - or how little - you need to spend. Choose from an amazing abundance of software programs and packages, cassette units, VDU terminals and scores of computer games.

Swap your views and know-how with hundreds of other home computer enthusiasts - and find out a whole lot more from

Come and watch the incredible ingenuity of computer controlled "mice" and how they find their way (or not!) to the centre of a maze. The knockout heats and the Euromicro British Final can all be seen at The Computer Fair! Bring the whole family don't miss this opportunity of bringing computers into your everyday life.

Bringing computers to everydaylife

RF POWER TRANSISTORS-EX-STOCK

COMMUNICATION TUBES-EX-STOCK

SEND NOW FOR PRICE LISTS SHOWING QUANTITY DISCOUNTS

WW - 026 FOR FURTHER DETALLS
 WW - 057 FOR FURTHER DETALLS
WIRELESS WORLD APRIL 1982

 See our prices on opposite page for updated list
for popular RAMS, ROMS $\&$ CPUs. for popular RAMS, ROMS \& CPUs.

TELETEXT DECODER
(As described in Elekor Oct./Nov./Dec.,'81)
Kit for complete decoding board and kevboard $£ 85+£ 1$ P\&P
Reprint of articles $£ 1.25$

 f115 + El .50 Plep.

UV ERASERS		
UV1B £42 6EPROMS	UV140 f61.50 Upto 14 EPROMS	UV141 $£ 78$ As UV140 bu with timer
All above ERASERS fitted with the safety interlocks to avoid accidental exposur to UV rays. UV rays are very dangerous to human eyes and skin.		
TECHNOMATIC TECHNOMATIC TECHNOMATIC		

WIRELESS WORLD APRIL 1982

The April issue of Your Computer is full of good things:

- How to write your own adventure game for the ZX81
- Review of the growing range of ZX81 boards and control ports
- How to adapt the ZX81 to use Atari joysticks

Also in this issue:

- Expanding your VIC20. Tim Hartnell looks at peripherals and add-ons - BBC graphics. A further look at the colour and graphics facilities of the BBC micro.

All this, PLUS our regular features and pages of program listings and games for YOUR micro. Why not place a regular order to avoid disappointment? Or take out a subscription by completing the coupon.

To: Marketins Department, Room 316,

Quadrant House, The Quadrant,
Sutton, 5 ,
Sutton, Surrey SM2 5 AS
Please send $m e 12$ issues of Y Your Computer
\mid |lenclose cheque
payable to IPC Business Press Ltd

4 MILLION

I.t.T. ELECTROLYTICS NEW AND BOXED NOW IN STOCK

EN 1212 AXIAL EN 1235 RADIAL
The whole range available at unbeatable prices. Send for list.

> 5 million Disc Ceramics in stock. Ceramic plate. Multi-layer ceramic. Low voltage discs. Monolithics. Ceramics. High voltage discs. Subminiaturre plate, epoxy cased. Send for lists or please phone for details.

MULLARD: Series 106 Computer grade electrolytics $10,000 \mathrm{\mu F}$ at 16 V . Brand new and boxed..39p ea.
SPRAGUE: Series 36 D Computer grade electrolytics 3,300 at 40 V .
 Brand new...nly 40p

VIDEO GAME BOARD

FIELD GOAL VIDEO GAME, BY TAITO. A top quality board complete with 6800 CPU system with 2716 eproms with circuit
diagram, plus all connections for either colour or black and diagram, pius alic connections for either colour or black
white monitors (TV sets). Price $£ 20$ + VAT $£ 3$. P/P $£ 2.55$. POWER SUPPLY KIT TO SUIT + circuit diagram. Price $£ 15$ + VAT $£ 2.25$. P/P $£ 3.45$.
2×22-WAY GOLDPLATED DOUBLE-SIDED $0.156^{\prime \prime}$ EDGE CONNECTORS to suit videoboards.
Price $£ 1.60$ pair + VAT 24 p. P/P included.
THE COMPLETE KIT $£ 46$ INCLUSIVE. Full details on application.

WE PURCHASE

Surplus component stocks, redundant materials, bsolete computers, for cash

We also collect - distance no object. Just call:
C. T. Electronics (Acton) Ltd.

267 \& 270 Acton Lane, London W4 5DG
Telephone 01-747 1555; 01-994 6275 Telex 291429

This advertisement is mainly of our excess stockholding. We also have excellent stocks of semiconductors; hardware, cables

Agron from M.I.r.(Eng.) your best buy!

BATTERY/MAINS PORTABLE
8Dum
Duand Bandwidth.
Sensitivity

£313.00

$\underbrace{\text {. }}_{\substack{\text { Microlmage Technology } \\ \text { (Engineering)LIdd }}}$

I.I.T. [Engineering] Itc.

WW - 087 FOR FURTHER DETALLS

by 7141 피 14 島

Unravel the mysteries of radio and electronics with a copy of Foundations of Wireless and Electronics by M.G. Scroggie. 250,000 enthusiasts and students have already used this remarkable book to master the elementary principles of electronics. In fact, many of today's radio and electronic engineers were weaned on Scroggie.
The book is written clearly and concisely in Mr. Scroggie's well-known and often humorous style. He assumes no previous technical knowledge and only uses mathematics where essential.
Order your copy now -
Order your copy now -
Postage and packing is $£ 1.10$ each copy in the UK, £1.30 overseás (surface mail).
$\square \square$
Please send me copy/copies of Foundations of Wireless and Electronics by M.G. Scroggie at $£ 5.25$ per copy plus postage and

$20 \mathrm{MH}_{\mathrm{z}}$ DUAL TRACE OSCILLOSCOPE
 c^{4} Ansen ingitu omill $6^{\prime \prime}$ Internal Graticule CRT.
Component Test Facility.

MM-100
£245.00 HAND HELD MULTIMETER
 £47.00

WGREDI:LE BARGAIN OFFERS FIRST GOME FIRST SERIVED.

HEWIETI PACKARD	TRS80 interface (for expanded version) . . $£ 15.00$	SHUGART SA450 Double-sided mini-floppy
9830A PROGRAMMABLE CALCULATOR with		(NEW) $£ 2$
memory extended I/O ROM, string variables	Fricion Feed Adaptor .ion 818.50	TEST EQUIPMENT
ROM, 1 serial interface and 3 parallel	(refurbished) $£ 75.00$	AVO 7 Refurbished.
MONITIOR		
$5015^{\prime \prime}$ gre	TEXAS 733 KSR (as seen) $£ 225.00$	
¢65.00	KEYBOARDS	BRUEL \& KJAER 2105 Freq meter $£ 225.00$
BALL MIRATEL TVX90 $9^{\prime \prime}$ " white phosph	CLARE-PENDAR KB3 (tested) $£ 25.00$	COSSOR 4000 Oscilloscope 50 MHz . . . 2200.00
	EOGECONNECTIOR KBI 5 (NEW) $£ 1.50$	COSSOR 4100 Os
		GENRAD Sound Level meter 1981 $£ 20$
with space for keyboard (used, tested). . . £55.00	enclosure incl power supply (NEW) . . \ldots \&55.00	GENRAD Sound Level meter 1983 $£ 75.00$
All above include power supplies and require	TMS 5000 ENCODER (as used in KBb) (NEW)	HEWLET PACKARD 741B AC/DC Diff Voltmeter.
PrINTERS		PACKARD 140
		HEWLET PACKARD 1404A
DAIA DYNAMICS KSR390 (refurbished). $\mathbf{£ 2 2 5 . 0 0}$	(Offers invited for loi - approx 16,000)	HEWLETT PACA
rolls $300^{\circ} \times 81 / 2^{\prime \prime}$ (NEW	MISCELLAMEOUS	dioit DMM
IBM 7351/0 WRIIER (as		WAYNE KERR Testamatic TiM30
E DATA SERIES 20	50.00	OSCILLOSCOPE CRT D13-576/26 Brand New
Printer, RS232, 120 Cos (AS SEEN) . . . £ $£ 99.00$	FACIT 4060 P/T PUNCH C/W 5106 Control	Surplus.
SEIKOSHA GP8O PRINTER (NEW) 8175.00		TRONIX CRIS 500 Series
Act		
$\begin{aligned} & \mathrm{ACC} \\ & \mathrm{ADP} \end{aligned}$	5.00	All ite
		All prices subject to carriage (unless coilected)
	RACAL MODEM model 26 (As Seen) ... $£ 199.0$	Cash with order only

$\stackrel{\text { RN232 }}{=-1}=1=1 \equiv 1=-1=1$
Electronic Brokers Ltdo., $61 / 65$ Kings Cross Road, LondonWC1X 9LN. Tel:01-278346i. Telex 298694
WW - 204 FOR FURTHER DETALS

Appointments

Advertisements accepted up to 12 noon Monday, 5 th April, for May issue, sub,
to space being availabe.

DISPLAYED APPOINTMENTS VACANT: $£ 13.50$ per single col. centimetre (min .3 cm) BOX NUMBERS: £1.50 extra. (Replies should be addressed to the Box Number in th advertisement, clo Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.
PHONE: IAN FAU信 $1-6613033$ (DIRECT LIN

ALWAYS AHEAD WITH THE BEST!

£5,000-£15,000

COMMUNICATIONS: VHF - UHF - MICROWAVE - TROPO SATCOM
COMPUTERS: MINI - MICRO - ATE - PROCESS CONTROL DATACOMMS: MODEM - MUX - TELEGRAPHY - MESSAGE SWITCH - PACKET SWITCH
Where does your skill and interest lie
Design? Test? Service? Software? Consultancy? or perhaps Research?

* There are opportunities for Managers, Project Managers, Engineers and Technicians.
* Make your first call count - Contact MIKE GERNAT on $076384676 / 7$ (usually until 8 p.m.) ELECTROMIC COMPUTER AMO MAMAGEMENT APPDINTMENTS LIMITEU 148-150 High St., Barkway, Royston, Herts SG8 8EG.

ENGINEER, VACUUM DEVICES

£8,950-£10,924 p.a. (according to qualifications and experience)

We require an Electronic Engineer, with C.Eng/de-
gree/HNC qualification, plus a minimum of three gree/HNC qualification, plus a minimum of three years' post-qualification experience in the design,
manufacture or application of vacuum devices manufacture or application of
Specific areas of involvement and responsibility include the application, acquisition, testing and
distribution throughout the $B B C$ of all types of distribution throughout the BBC of altar tevices and in particular the valves and klystrons, etc.,. used at transmitting stations, com-
puterised stock control and in staff management.
Relocation expenses will be considered and beneRelocation expenses will be considered and bene-
fits include 5 weeks annual holiday. Men and
women are equally eligible to apply.
Requests for application forms to The Engineering
Recruitment Officer, BBC, Broadcasting House, ondon W1A 1AA quotingsting House, 82. E. $1140 / \mathrm{WW}$ and AA, quoting reference
lope at least 9 " $\times 4^{\prime \prime}$.

BBG

Sound Attenuators Limited require an
Electronics Engineer
to work on the active control of sound in ducts. We require a ence and an interest in acoustisc. The project, involves the
mplementation of basic research already undeitaken at the University of Essex. The successful candidate must demonstrate
self-reliance, practical ability and a keen interest in seeing the
project through to a successful conclusion. stul conclusion. Mr. A. T. Fry full c.V. Sound Attenuators Ltd.
Eastgates, Colchester Esse Eastgates. Colchasterser, Essex
Tel: 0206866911

Appointments

SystemsDesign Team

Satellite Communications Ground Terminals
Marconi Space and Defence Systems are Europe's acknowledged leaders in the development of advanced systems for aerospace and satellite communications. The specialist teams working on sophisticated satellite ground terminals - offering total involvement from initial design and development through to implementation. West-graduate experience in the design, development or operation of ground terminals

SYSTEMS MANAGER

Aged $30+$ must be able to combine high level technical expertise with the man-management skills necessary to weld a group of systems professio
closely knit team. At least 4 years' experience in a similar role is essential.

SENIOR SYSTEMS ENGINEERS Applicants sho
in-depth experience

SYSTEMIS ENGINEERING
We have a number of openings for graduates in their mid-20's with an Honours degree in Engineering, Physics or Mathematics and 1:2 years post-graduate experience.
These are key career positions carrying salaries that fully reflect their importance, as well as an attractive range of benefits, including relocation assistance where necessary To discuss any of these posts with one of our senior specialists or project To discuss any of these posts with one of our senior specialists or project
managers, telephone Bill Seton, Ext. 18 , or Liz Kahn, Ext 22, on (O1) 9542311 or write managers, telephone Bil seton,
to them at Marconi Space and D
Stanmore, Middlesex, HA7 4LY.

Marconi
 Space \& Defence Systems

INSTITUTE OF PSYCHATRY audio-visual technician

 Salary accor

 (154)

HIGH-LEVEI VACANCIES FOR

 HIGH-FLYING ENGINEERS!

 Tease ele eftone or senac. $y .1$ to

Charles Airey Associates $13 / 16$ Jactob's Well Mews, George Strieet, London WTH 5PD

THE THOMSON FOUNDATION TELEVISION COLLEGE ENGINEERING LECTURER ASSISTANT ENGINEERING LECTURER are required at the College to join a team of staff training engineers from developing countries, in Television and
Radio The successful candidates will have had a minimum of 5 years' or 3 years' experience respectively and broad-
casting technology, and will hold an appropriate degree HND or equivalent. $£ 9,251$ by 5 increments to $£ 11,504$
Salaries:
Lecturer $-£$ Ast. Lecturer $-£ 7,284 \times 5$ to $£ 9,052$. The posts are perisionable, based at Glasgow where the residential rraining is conducted, assigments abroad each year for in-country training. Pease write or phone for application form to Principal,
Thomson Foundation TV College Kirkhill House, Newton Thomson Foundation TV Coilege, Kirkhill House, Newton
Mearns, Glasgow $\mathbf{~ G 7 7} 5 \mathrm{5H}(\mathbf{0 4 1 - 6 3 9}$ 1021).

Electronics-up to $£ 7,500$

Have you an Electronics Qualification? Could you apply it to Scientific Instruments?

then this could be just the job you're looking for. It offers variety and real opportunity to apply both skill and design
initiative to the solution of a whole range of technical problems of a one-off nature.
We are:

* a leading pharmaceutical company with world-wide

You will:

* help to design, modify and where necessary repair advanced scientific instruments and computers in the
Physical Chemistry Department.

Proba
have:

* formal training up to HNC or equivalent
* an interest in scientific measurement technique
* sound practical experience of electronics.

We offer:

* a competitive salary dependent upon experience and
ability
* day release opportunities for further study
* Flextime working
* very modern facilities in a newly opened building. Interested? For an application form please ring our automatic
telephone answering service on $01-6506541$ giving your telephone answering service on $01-5006541$, giving you
name, address and quoting reference no. WRL/176. namerntively write to A M M Alternatively write to A. G. Murdoch, Personnel Officer, The
Wellcome Research Laboratories, Langley Court, Beckenham, Kent BR3 3BS.

Wellcome

PRODUCTION MANAGER

PROJECT ENGINEER BROADCAST AUDIO SYSTEMS

 Theatre Projects, 11 Marshalsea Road, London SE1. Tel: 01-403 3838

REPORTER/STAFF WRITER

MIDDLE EAST ELECTRONICS

An enthusiastic journalist, ideally with technical qualifications
(Degree or HND) and experience, to work on Middle East Electronics.
This magazine, which is going monthly in May, is read by senior
electronic engineers in the electronic engineers in the Middle East and the Editor is looking
for a responsible number two to develop the journal's potential. Writing and subbing skills essential plus knowledge of the in Writitg and subbing skills essential plus knowledge of the in-
dustry and,
theiefr technolocerabty experience of developing countries and
advantage.
Our UK office is located in Morden, Surrey, but we offer oppor tunities
tion).
For an application, please write to, or telephone Ray Ashmore Editor, Middle East leactronics Cro, Crown House, London Road
Morden, Surrey. Tel: $01-543$ Ho51. Salary and conditions is accordance with the IPC/NUJ agree ment.
We are an equal opportunity emplover

WIRELESS WORLD APRIL 1982
 ANO SRELIALSATPUSICICATIONSINTHE WORLD.

Appointments

Research \& Development Engineers YOUR OPPORTUNITY TO ADVANCE BROADCAST TELEVISION TECHNOLOGY
Tremendous growth and success has resulted in career opportunities at Sony Brachast La., a company established four years ago to specialise in the high
technology field of broadcast television equipment. The Advanced Developments
group is part of an international $\& D$ team committed to pioneering group is part of an international R\&D team committed to pioneering new technology.
Applications are invited from experienced engineers capabile of contributing to one or Appications are invited rime exp
more of the following activities:

- Digital Audio Systems Audio/Video Digital Recording Audio/Video Digital Reco

The successiu candidates wili Research \& Development Established as a world leader pioneéring digital
recording, weare eurrently extending our
rang ont activities The the range of activities. The R/D team is responsible
for studying the development and application for studying the development and application
of digital video and audio processing techniiquese. In additition increasing support is
required trom theoretical studies and computer required fro
simulation. Appointments will be made at all levels and appolicants should have an honours degree or
equivalent tuualififaction. Attractive salaries are oftered together with first class conditions of
employment and relocation assistance will be given where appropriate. employment and relocation assistance will be given where appropriate. If you are interested contact: Mike Jones,

City Wall House Basing Vièw, Basingstoke Hampshire RG21 2 L United Kingdom Telephone (0256) 55011
Broadcast

- Microprocessor Applications

Analogue Video Development
wing section
Special Design Projects ncieasing use is being made of computer and
micropocessor based equipment for signal
outing and control in studio center outing and control in studio centres.
Hardware/Software engineers are required tor he development of automated broadcasting and remote control systems. This can include
"one offt developments designed to customer
requirements. "one off" devet

£25,000? SW OUALITY ENaINEERS
 SERVICE ENGINEER

PROJECT MANAGER
 DEVELOPMENT ENGINEER to work on Static invertor Systems. To
E12.000 - London SWW. R.F. DESIGN ENGINEER to lead the develepment of a new Low
Power Transmiter. To $10,0000-$ Yorks. DESIGN ENGINEERS
 CLIVEDEN CONSULTANTS
 CLIVEDEN

CHARING CROSS HOSPITAL MEDICAL SCHOOL (University of London) MEDICAL PHYSICS TECHNICIAN An enthusiastic person is required in the Department of Anaesthesia in Charing Cross Hospital Medical School. Work involves a full range of physiooperating theatres and Intensive Care Unit, and maintenance of equipment. Assistance will also be required in the development of instrumentation for physiological fields. The successful candidate should be qualified in at least one of these fields and show an interest and willingness to learn about the others. places on the individual will also be Salary will be within the range of f4,958-f 6,993 per annum plus f 859 London Weighting Allowance, according to from The Secretary, Charing Cross Building, St. Dunstan's Road, London W6 8RP (tel: 01-748 2040 ext 2067) this advertisement.

Electronics Engineers

Glaxo have the following opportunities at their Research Central Services Unit at Greenford which is involved in the design and maintenance of electronic equipment needed for experi-

ELECTRONICS DESIGN ENGINEER

£6705 pa to £9475 pa

to carry out design work on a wide range offaboratory equip entemploying analogue, digita equivalent with several years general design experience.

SERVICE TECHNICAL OFFICER/ENGINEER

£5874 pa to £9210 pa

to be responsible for general servicing work. Candidates, qualified to Higher National Certif cate or City \& Guilds Full Technical standard should have several years experience of analogue and digital equipment, preferably in a laboratory environment.

Starting salaries will be between the figures quoted which include London Allownce and wir reflect qualifications and experience
In addition the Company operates a bonus scheme and non-contributory pension scheme
Assistance with relocation expenses will be available in appropriate
Assistance with relocation expenses will be avaliable in appropriate cases.
Please write or telephone for an application form to: Miss E. M. Butier, Personnel Department
Glaxo Group Research 01-422 3434, ext. 2707 quoting reference number $2 \mathrm{H} / 418$.

f/aXO Group Research Ltd

(1541)

GWENT HEALTH AUTHORITY

ELECTRONIC AND BIO-MEDICAL EQUIPMENT
 MAINTENANCE TECHNICIAN GRADE II

This is an established post offering wide scope and opportunity in the
development of electronic and bio-medical services. The successful candevelopment of electronic and bio-medical services. The successful can-
didate will be responsible to the Area Engineer for the testing and maintenance of a variety of electronic and bio-medical equipment throughout
the area, and will also be responsible for the development of policy
tegarding mint regarding maintenance contracts.
The technician will be based at a purpose-built workshop at All--Yr-Yn
Hospital Newport, and will be responsible for an establishment of two
 development of this service.
Applicants should be in possession of ONC/HNC (or equivalent qualifica-

 Preparing reports and be abl
tive maintenance scheme.
Hours: Normally 38 per week.
Salary: $\mathbf{£ 6 , 6 6 8 - £ 8 , 3 1 6}$
Application form and job description are available from:
The Area Personnel Department
Mamhilad, Pontypool, Gwent
Closing date: 31.3.82

trainee broadcast ENGINEERS

ITN needs more engineers to support its expanding programme of news coverage- expansion which is expected to continue
through the 80 with the development of the Channel Four news
service service.
We have a number of vacancies for Engineering Trainees, va-
cancies which could give you the opportunity to start a career in carcies which could give you the opportunity to
Broadcasting Television Engineering with $I T V$.
First, we need you to have a firm interest in pres technical branch of broadcasting.
Then you should have completed, or expect this year to complete, theoretical training in Electronic Engineering with a bias suitabsle are T.E.C. Higher Technical Diploma, T.E.C. Higher Technical Certificate or the HND/HNC equivalent.
Initially, you would be involved in a $9-12$ month familiarisation
period by a rotational attachment to our four maintenance areas period by a rotational attachm
and the Projects Department.
After successful training you would be employed on the mainour Central London Studios near Oxford Circus, from which the TN national news programmes are networked.
Successful applicants will join ITN in early September, 1982 rising to $\mathrm{£6} 6,472$ at age 20 . If you have the qualifications and the drive to work with us in a
busy, lively environment then call us on $01-6378644$ ext 275 or
write to

The Manager, Technical Training
${ }^{48}$ Wells Street
for an application form quoting reference 476099
WRELESS WORLD APRIL 1982

Appointments

Dectronics R\&D

£8,589

Join us in the forefront of technology

Senior Engineer
 - Broadcast Video Equipment

A challenging role in high technology Quality Assurance
Due to significant continued expansion, an excellent
opportunity has arisen at the international headquarters of opportunity yas sarisen at the international heacducuarters of
Sony Broadcast, a world leader in professional broadcast Selevision equipment. The Company as an expanding
range of hiah technology products which includes video range of high technology products which includes video
cameras, VTRs, editing control systems, digital time base correctors and monitors. An experienced engineer is required to ioin the
Quality Assurance team and assume responsibility for the throughput of cameras and ather products. Activitios will
include close liaison with other engineering departments include close liaison with other engineering departments
and will necessitate working to stringent specifications. A knowledge of current camera measurement practices
would be avvantageous
Age $25+$ applicants should be educated to at least HNC Electroncts and have several years engineering experience. The position would suit a self starter w
has the ability to lead and motivate a small team. Prospects for career development are considerable.
We offer a first class working environmentin our new We offer a first class working environment in our new
prestioious enineering complex. together with an
attractive salary and excellent conditions of employment, prestigious engineering complex, together with an
attractive salary and excellent conditions of employmen
which include Company pension/lite assurance which include Company pension/life assurance
schemes, private medical cover and staft restaurant. $\frac{\text { If you are interested please write, giving details }}{\text { of experience and present salary, to Mike Jones, Senior }}$ Personnel Officer.
du 华 sony Broadcest Lt City Wal Hows
Basing View. SONY. Basing View. Basings
Hampshire RG21
Broadcast

HF-VHF-UHF and Microwave

A challenging and full career in Government Service Candidates, normally aged under 30,
should have a good honours degree or equivshould have a good honours degree or equivabout to graduate may be considered. Appointments as Higher Scientific
absicer ($£ 6,530-£ 859$) or Scientific Office Officer ($£ 6,530-£ 8,589$) or Scientific Officer
(£5,176-£6,964) according to qualifications ($£ 5,176-£ 6,964)$ according to qualific
and experience. Promotion prospects. and experience. Promotion prospects. the Recruitment Officer (Dept WW 4.82), H M Government Communications Centre,
Hanslope Park, Milton Keynes MK19 7BH. Hanslope Park, Milton Keynes MK19 7BH.

Communications Proposals Engineer
anomoan
ateme
ALMERYEลE

TECHNICAL/SERVICE MANAGER

Due to the expansion of our business we are urgently seeking a person
capabie of setting up and running a pager service department, of maintaining

 involved als
the future.
person.

Send CV to: P. Sinnot, Managing Director
Pageboy Services (UK) Lto., Westley House

CAPE WARWICK LTD.
require
Electronics, Control $\&$ nstrumentatio Engineers

As an expanding independent
testing laboratory we require testing laboratory we require
suitably qualified/experienced engineers to design, arrange manufacture, commissio
and maintain test equipments. end c.v. or telephone for tion forms to:
Mrs. E. Arche Cape Road, Warwick
Warks CV .

ACULTY OF SCIINCE
ISTANT EXPERIMENTAL OFFICER

Applicants should have a degree in
Dectronics or related subject orge

be an advantage.
Salary scale 0.R. $1855,285 .-88,925$

Appointments

Microwave Specialists

Communications Satellite Payload Equipment

Marconi Space and Defence Systems, Europes's acknowledged No 1 in the development of advanced setelite systems, are seek at their Stanmore location. We key roles in new communications satellite projects at he chance to work in a high technology environment that offers total involvement and

MICROWAVE EQUIPMENT MANAGERS

Will be responsible for an Equipment forming part of the Communication
Payload programme. This will involve onginal design, manuacture and test of
breadboards; engineering; quadification and flight model hardware: and will entail readboards; engineering; quadilication and flight model hardware; and will ental
jaison with European prime contractors on all aspects of the programme. The laison with European prime contractors on al aspects of the programme. The
programmes are usually of an international nature, requiring high technology
designs, coupled with demanding timescaies designs, coupled with demanding timescales

MICROWAVE DEVELOPMENT ENGINEERS

 Will report to the Equipment Manager and will be responsible for developmentwork on the payload equipments. Tasks will include the design of microwave circuits work on the payload equipments. Tasks will include the design of microwave circuits
with the emphasis being on lightweight, high reliability designs including extensive us of MIC technology Aplicants for
Appicants for both positions should hold a degree or equivalent quadification
Salaries will be negotitable and accomenaneed by an excellent range of benefits
To find out more details, write or telephone Bill Seton. Personnel Man
To find out more details, write or telephone Bill Seton, Personnel Manager Marconi Space and Defence Systems, The Grove, Warren Lane, Stanmore,
Midx. HA7 4LY. Tel : $01-9542311$ Extn. 18

Marconie-
 Space \& Defence Systems

ELECTRONIISSDVVELOPMENTAND CANCER HoSRINCICNG: INSTITUTE ELECTRONIGS TECHMICIAN is JIGGuirad toi ioin an established group
 WILTSHIRE COUNTY COUNCIL
 Department of Architectural Services
 Appointment o
 CHIEF SERVICES ENGINEER
 (Salary $£ 11,220-£ 12,408$)

no Bis el en El

\section*{| Ap |
| :---: |
| and |
| sen |}

Applications are invited for this post, the duties of which services for building projects and for the associated maintenance and energy conservation work in buildings throughout the Thie succe Institution of Building should be a Member of the Chartered tion of Electrical Engineers.
Application forms and full details may be obtained from the quoting referect, County
19th March, 1982 .

Founded in 1936, Marconi Instruments today employs Founded in 1936, Marconi Instruments today em
some 2,000 people in the design, development, production and marketing of its advanced communications test equipment and A.T.E

To meet the challenges of tomorrow's markets, we need more electronics designers and technicians. And to turn new ideas into fully operational equipment we need production and service personnel as well. If you would like to develop your potential in the exciting future of Europe's leading test equipment speciaitist, complete the coupon and send it to us at the address below:-
marcon below instruments Return this coupon to John Prodger, Marconi Instruments Limited,
Freepost, St. Albans; Herfordshire. AL AOBR. Teleophone: St. Albans 59292

Technicians in

Communications

GCHO We are the Government Communication Headquarters, based at Cheltenham. Our interes
is R \& D in all types of modern radio Headquarters,
is R \& D in all types of modern radio communications - HF to satellite - and their
security. security. THE JOB All aspects of technician support to an - Unparalieled range of communications $\begin{aligned} & \text { equipment, much of it at the forefront of current } \\ & \text { technol }\end{aligned}$ technology
LOCATION Sites at Cheltenham in the very opportunities for service abroad

- PAY Competitive rates, reviewed regularly. Relevant experience may count towards increased starting pay. Promotion prospects. TRAINING We encourage you to acquire new kills and experience
QUALIIICATIONS You should have a TEC acceptable equivalent, plus practical experien HOW TO APPLY For full details on this and lacking practical experience, write now to Recruitment Office
Recruitment Office
GCHO, Oakley, Priors Road, Cheltenham
- Glos. GL52 5AJ

$-$| or ring |
| :--- |
| 024221491 |
| |

\checkmark
-

ELECTRONICS RESEARCH AT THE UNIVERSITY OF ESSEX

Graduates who have (or final year students who expect to
obtain) a first or upper second class honours degree are obtain) a first or upper second class honours degree are
invited to apply for research leading to a higher degre inited. to apply for research leading to a hig
(M.Sc., M.Phil. or Ph.D) in the following areas: Acoustic Noise and Vibration Cancellation (adaptive
microprocessor-controlled systems); Audio Engineering microprocessor-controniled systems); Audio Engineering
(amplifier design, digital signal processing, stereo); Cir
cuit cuit Design Studies (cicrevit theory, sensitivity effects,
CAD, filter realisations); Digital Transmission for Tele communicteaions (filters,, line codes); Interactive Systems (handwriting analysis, computer graphics, personal data-
bases), Microcomputer Systems (embedded microcomputer applications, microprogramming, architectures Microwave and Millimetre Wave Propagation (scatterin
from precipitation particles, space frame radomes); $\mathbf{O p t i}$ cral Communications (detectors, noise processes., , igt
colt design, switching); Picture Coding and Processing (data
reduction, adaptive filtering and coding, feature extrac reduction, adaptive filtering and coding, feature extrac
tion) Satellite Communication Systems (business
systems, systems, protocols, data and video servicess intermodus,
tion studies); Telecommunication Switching Systems tiond studies); Telecommunication Switching Systers
and Software (computer control) software production teletex and viewdata); Visual Displays and Televisio
Engineering (computer graphic input systems, stereo and Eolour displays).
Further information and application form available from:
Dr. J. K. Fidier, Chairman, Department of Electrical Engineering Science (Ref. Jan/2) University of Essex Wiven neering Science (Ref. Jan/2), University of Essex, Wiven
hoe Park, Colchester CO4 3SQ.

Electronic Engineers What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 4000$ to $£ 12000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL
PERSONNEL SERVICES,
2 Mount Ephraim,
unbridge Wells,
Kent. TN4 8AS.
Tel: 089239388 TJB

Please send me a TJB Appointments Registration form

Name
Address

Broadcast Flel Service enainerrs

MIDDLE EAST

To join highly professional team based in Reading, Berkshire, responsible for
installation and service of television studio equipment at customer sites installation and service

Key requirements are:

* Degree/HNC in Electronics or equivalent qualification demonstrating a sound
\star Degree/HNC in Electron
* Three years' experience in Broadcast Television servicing VTRs, Cameras,
\star Ability to work on own initiative while travelling away from base.
Successful applicants will receive product training, excellent basic salary with generous overseas allowance as appropriate.

AMPEX
Please contact Maureen Brake on: ReadLimited, Acre Road, Reading, Berks.

(1556)

4) Southampton

 vibration hesearch VOICE COMMUNCATIONS SYSTEMSSALARY TO £12,500
 Workincludes speech processing, noise

MARTIN ASSOCIAT

ELECTRONIC AND
COMPUTER SERVICES Tel. 0486267918
HARD DISC
BARGAINS

FOR SALE

SYSTEMS ENGINEER

ENEG. + BUPA + 4 WEEKS + CAR
To assisit the Sales Manager with design and specification of
television systems, particularly pulse and routing systems. The position will involve interfacie with both customenes and
factory with iverall responsibility for smooth flow of arge
 proactast technician or have gainedexperience in the systems division of a major manufacturer.

SALES ENGINEER

£NEG. + BUPA + 4 WEEKS + CAR
To assist the Sales Manages in selling to the major TV
Network in the U.K. and possibly assisting our European
Network in the U.K. and dossibly assisting our European
distributors. The successful candidate will be experienced in sellinin broadcasting equipment and will know the structure of
hhe U.K. and European Networks.
.he U.K. and Europe
Apply to:
J. Prigmore, Sales Manager Restech Indestria Estate,
Rores End Racd.
SELTECH
Cores End Road,
Bourne End, Bucks. SL8 5 5T
Tel. Bourne End (O62 85) 2913

TELECOMMUNICATIONS
 ENGINEER - En,000a.

A vacancy exists in the Communication Department of the company for an Engineer of HNC/City \& Guilds stan-
dard. Responsibilities would mainly lie in the installation and maintenance fields of the company's Financial/Commodities Retrieval Service, necessitating involvemen
with in-house computers and client located terminals.

Apply in the first instance to:

> Miss J. T. Cowell The Associated Press 83-86 Farroingdon Stree
TO MANUFACTURERS, WHOLESALERS \& BULK BUYERS ONLY
 10 meg.
RESSTORS WIREWOUND. $11 / 2,2,5,10,14,25$ Watt.
CAPACITORS. Silver mica, Polystyrene, Polyester, Disc CAAACITRARS. Silver mica, Polystyrene, Polyester, Disc Ceramics,
Metalamite, C280, etc. Convergence Pots, Slider Pots, Electrolytic condensors, Can Types,
Axial, Radial, etc. Axial, Radial, etc.
Transformers, chokes, hopts, tuners, speakers, cables, screened wires
connecting wires, screws, nuts, transistors, ICs, Diodes, etc.e.etc. All at Knockout prices. Come and pay us a visit. Telephone 4452713
4450749 . 44507 BROADFIELDS \& MAYCO DÍSPOSALS

 $\frac{1}{4}$

QUARTZ CRYSTALS

- HIGH STABILITY GOLD ELECTRODES
- COLD WELD UNITS
- GUARANTEED 7-DAY
 ALSO
$200 \mathrm{KHZ}-70 \mathrm{MHZ}$ SERVICE AVAILABL 200KHZ-70MHZ

IONISER KIT (IMANS

This regative ion generator gives you the power to saturate your home or office
with millions of reffeshing ions. Without fans or moving parts it puts out a
 pleasant breeze. A pure flow of ions pours out like water from a fountain, filling
your room. The result? Your air feels fresh, pure, crisp and wonderfuly refresh-
${ }^{\text {ing. }}$ All parts, PCB and full instructions
All parts, PCB and full instructions
siuitabe case includng front panel, neon switch, etc
HOURS
A suitable case includng front p
Hours
Mondoy to Friday 9 am. 5 pm .
Saturday 9 am 4.30 pm .
Price includes post $\&$ VAT
Price incla/Access Wel
Bide range of Japanese integrated circuits and transistors stocked
Advance Works, P. E. POWELL
T.

WRONG TIME?

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE Artwork, Circuit Design, FCB Assembly, Test $\&$ Repair Service, Q.A. Consultan
Prototypes, Final Assembly.
 1 FFANCISCAN RAAD
TOOTNG, $L O N O O N S W 17$

(en Limited A complete P.C.B. service offered. We will work from your circuit diagram and produce the finished board. Any type of board manufactured includ- ing double-sided and P.T.H. Legend and ing double-sided and P.T.H. Legend solder resist available if required. Our rates are very competitive and we offer a FREE collection and delivery service on orders above £200. Turnaround can be as little as three days. Telephone Colchester (0206) $71000 / 869514$ with your P.C.B. requirements and we will be happy to oblige. 40 Military Road, Colchester CO1 2AN.

BOARDRAVEN LTD.
phinted circur boands

PCB ASSEMBLY

capacity available

TW ELECTRONICS LTD.

$\xlongequal{\text { RECTEMNNC DEEINN SERRICE. Immedi- }}$

CAMBRIDGESHIRE COLLEGE OF ARTS AND TECHNOLOGY

COURSES IN

ELECTRONICS

CNAA BSC in Electrical Engineering

CEI PART II

A one-year full-time or two-year part-time course, which is the
present academic qualification for Chartered Engineers. present academic qualification for Chartered Engineers.
Subjects offered include Electronics, Communication, Controi and Computer Engineering. Entrants should have passed CE
Part 1 or have been exempted; holders of HC and endorse-
ments or HND are so qualified. ments or HND aresen ox ouanifited
HND in Electrical and Electronic Engineering A $21 / 2$-year sandwich course, including study of Electrical,
Electronic and Communication Engineering, combined wwith
Contro Engineering and Dioital Techeriques. Entry qualificaClentrol Engineering and Dionital Techniqu
tions: 1 A level in Mathematics or Physics.
Further details and application forms are available from the
Information Office Room 1305 , Cambridgeshire College of Arts Information Office, Room 1305, Cambridgeshire College of Arts
and Technology, Cambridge CB1 2AJ. Telephone (0223) 63271 .
ARTICLES WANTED

WANTED!

Receiving Valves, Antique
types but unused and boxed.
VAN DATA SYSTEM CO. LTD.
1-12-8, Kyomachibori,
ku Sosaka 550, JAPANi-
(1487)

WANTED

Supplier of lead sulphide photo
cells. Atiernatively, wiif purchase
information on manutacture and
Please write: Wlant: Wilians, Oak Tree
Farm, Pund Geen,
Bewdley, Worcs.

CLASSIIIED ADVERTISEMENTS

Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

- Name and addressto boe encluded in charge if ADDRESS:...
- BoxNo.Allow two words plus E .

COMPUTER APPRECIATION

INDEX TO ADVERTISERS APRIL

Appointments Vacant Advertisements appear on pages 117-127

Page	PAG	
Stical Mfy. Co. Ltd, 34	Faircrest Enginerering................................. 14	
Electronics (AEL) Ltd..................................	Farmell Instruments cover ii, Reader C	an Cyberneicics
AII Electronic Show ${ }^{24,25}$	dilectronics Ltd.....	
${ }^{\text {Ambit }}$ Amaternational	Fielditech Heatisunow Enering	
Anslia Components		
Antex (Electron		Mo Components S
Arcom Control Systems 14	Gas Electronics 31	
Aspen Electronics \mathbf{L}		
Aura Sounds Lid.	Grenson Electronics	
Avalon Electronics ${ }^{106}$	Griftronic Emission ... 94	Ressearch Co RST Valves mmunicatio
		Sagin M. R. . .-. Le.. 99
Iec	Harrison Brot	Ele
Black St	Hart Electronic Kits Ltd................................. 104	Electri
Broadfields and Mayco Disposals 104	Henry's Radio ... 98	ex Inst
		Sharp Electronics (UK) Ltd............................. 91
Cambridge Kits ... 103	House of In	air Research Ltd...............................18, 19
Catronics Ltd		er, E. A. Ltd. 4
tern Ele	${ }_{\text {ILP Transformers }}$... 99	${ }_{\text {Special }}$
Circuit Servi	Interface Q	Sunris Software
		Supersem...107
Products (El	Irvine Busines Systems 22	Surrey Electronics.
Colomor Electronics Ltd............................... 100		
Computer Appreciation128	Kelsey Acoustics Ltd. .. 6	Technomatic Ltd.110, 111
puter Fair,.i.................................... 178		
Crofton Electronics Ltd...................................10.10, 106	Lengrex Supples Ltd.................................. ${ }^{93}$	
Electronis (Acto		Thandor Electronic Ltd............................... 74
man Designs.	Maple Instrun	
Darom Supplies, ..16 ${ }^{16}$	Micro Times.	Valadio.. ${ }^{94}$
Offer	Millward, G. F., Electronic Co	
Display Electronis	M.I.T. (Engineering Lta	Wilmslow Audio ...
	Monoith Electronics Co. Ltd., The..................... 14	
Electronic Brokers Ltd. 3, 5, 7, 9, 115		Your Computer .. 116
Electroversal Ltd \qquad .30 .26	Northern Electronics \qquad .9	Zycomm Electronics Ltd.
overseas advertisement AGENTS: France \& Belgium: Norbert Hellin, 50 Rue de Chemin	Japan: Mr. Inatsuki. Trade Media- IPPA (Japan). B. 212 Tazab Heights. $1 .-5.10$ Ro	Jack Mentel, The Farley Co, Suite 650, Ranna Build. Claveland, ohio 4415-Teleghone: 12161621 1919.,
Hungary: Mrs Edit, Bajusz, Hungexpo Advertising Agency, Budapest XV, Varosliget. Telephone: 225008 - Telex: Budapest 22-4525	States of America: Ray Barnes, IPC Business - Tele-	Mr Tim Parks, Ray Rickes \& Co., 3116 Maple Drive N.E., Mive, Houston, Texas 77079 -
Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero, Ta Mantegna 6, 20154 Milan.	Mr Victor A. Jauch, Elmatex International, P.O. Bo. 34607, Los Angeles, Calif. 9003 8581 - Telex: $18-1059$.	Canada: Mr Colin H. MacCulloch, International Advertising Consultants Lta,. 915 Cariton Tower, 2 Cartion Street, Toronto 2 - Teteleponone (416) 3642269. Also subscription
Prined in Graat Britian by OB LL. She Shepen Place, Colchen Distribution Inc., 1414 floor, 111 Eightit Avenue, New Y Oor	. 10011 .	\& Sons (S.A.) Ldd. UNITED STATES: Eastern News:

Plugin for Fingertip Control!

Seld 111N ANTEX (ELECTRONICS) LIMITED

[^2]\qquad
ADDRESS
Ready to use Antcx miw mort XS BP sorrent iron con ng, ready to switch on.
The new handle in extratough material features a detactable finger-guide for precise control in operation and a hexagonal We have retained our well proven on the work bench. heat transfer and ease of fitting slide-on, slide-off bits make this the professional's choice of soldering instrument. The iron is also
available for $115,50,24$ or 12 volt.

* fitted with the NEW safety plug. A N T T E X

The Tektronix 2200 Series. Simply great.

Tektronix traditions of excellence in designing and manufacturing oscilloscopes are recognised all over the world. But rather than rest on past laurels, we have veered dramatically from the well established design paths we ourselves have laid down.

With the 2213 priced at $£ 670^{*}$ and the 2215 at $£ 850 *$, these 60 MHz dual trace oscilloscopes are an entirely new form of instrument.

Their most remarkable characteristic is the way in which major design advances have provided full-range capabilities at prices significantly below what you would expect to pay. How has this been accomplished? To begin with, we have reduced the number of mechanical parts by more than half. This not only saves manufacturing time, it lowers costs and improves reliability.

Board construction has been greatly simplified and the number of boards reduced. Board connectors have also been reduced substantially and cabling cut by an amazing 90%.

The 2213 and 2215 have a high efficiency regulated power supply which does away with the need for a heavy power transformer. There are no linevoltage adjustments. Just plug the instrument into a power socket supplying anything from 90 to 250 volts, $48-62 \mathrm{HZ}$, switch on and you are ready to measure. Power saving circuitry has eliminated the cooling fan, resulting in further economies in size and weight.

These scopes have it all. Dual trace. Delayed sweep for fast, accurate timing measurements. Single time base in the 2213, dual time bases in the 2215. An advanced triggering
system, automatic focus and intensity. Beam finder - and much more.
Interested? Then why not telephone your nearest Tektronix office or circle the enquiry number for further information.

Performance Specifications

Bandwidth

Two channels, DC-60 MHz to 20 $\mathrm{mV} / \mathrm{div}, 50 \mathrm{MHz}$ to $2 \mathrm{mV} / \mathrm{div}$. Light Weight
$6.1 \mathrm{~kg}\left(13^{1 / 2} \mathrm{lbs}\right) .6 .8 \mathrm{~kg}(15,0 \mathrm{lbs})$ with cover and pouch.

Sweep Speeds

Sweeps from $0,5 \mathrm{~s}$ to 0.05μ s (to 5 ns/div with $\times 10$ magnification).
Sensitivity
Scale factors from $100 \mathrm{~V} / \mathrm{div}$ (10×
probe) to $2 \mathrm{mV} / \mathrm{div}$ ($1 \times$ probe). Accurate to $\pm 3 \%$. AC or DC coupling.
Also available from Electroplan.

* Prices subject to change without notice.

Tektronix UK Limited

PO Box 69, Harpenden, Herts. AL5 4UP
Tel: Harpenden 63141 Telex: 25559
Regional Telephone Numbers: Maidenhead 062873211 , Manchester 0614280799 , Livingston 32766, Dublin 850685/850796

[^0]: Applications
 Automatic master clock and slave controller
 Synchronisation of separate equipment and Synchronisation of separate equipment and events.
 Programmable energy management system. Computer clock/calendar withement ststem.
 Data logging and time rery backup. Data logging and time recording.
 Process and equipment control.
 Broadcasting, Astronomy, Navigation
 Satellite tracking.

[^1]: WIRELESS WORLD-APRIL 1982

[^2]: Please send the ANTEX New Range full colour brochure to: NAME

